The option that is the correct one concerning the uncontrolled burn phase is:
- The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned.
<h3>What is uncontrolled combustion?</h3>
Uncontrolled Combustion is known to be the the time and place in which a kind of an ignition will stop and it is said to be never fixed by anything in regards to the compression ignition engine as seen in SI engines.
Note that the four Stages of combustion are:
1. Pre-flame combustion
2. Uncontrolled combustion
3. Controlled combustion and
4. After burning
Hence, The uncontrolled burn phase is characterized by uncontrolled combustion in a cylinder until fuel accumulated during ignition delay is burned as all the fuel need to burn out.
Learn more about burn phase from
brainly.com/question/14414049
#SPJ1
Explanation:
Archimedes' principle states that the upward buoyant force which is exerted on body when immersed whether fully submerged or partially in the fluid is equal to weight of fluid which body displaces and this force acts in upward direction at center of mass of displaced fluid.
Thus,
<u>Weight of the displaced fluid = Weight of the object - Weight of object in fluid.</u>
Answer:
D) 4
Explanation:
Roots of a polynomial must be factors of the last term.
In this case, the factors of 6 are +1, -1, +2, -2, +3, -3, +6, -6. The only factor that doesn't show up, given the options, is 4. This means that D is the correct answer.
The first ariplanr was made December 17, 1903
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN