Answer:
2.97 × 10¹³ g
Explanation:
First, we have to calculate the biomass the is burned. We can establish the following relations:
- 2.47 acre = 10,000 m²
- 10 kg of C occupy an area of 1 m²
- 50% of the biomass is burned
The biomass burned in the site of 400,000 acre is:

Let's consider the combustion of carbon.
C(s) + O₂(g) ⇒ CO₂(g)
We can establish the following relations:
- The molar mass of C is 12.01 g/mol
- 1 mole of C produces 1 mole of CO₂
- The molar mass of CO₂ is 44.01 g/mol
The mass of produced is CO₂:

Iron is left in the filter and salt solution (salt and water) passes into the cup.
Hope it helps
Answer: c
Explanation:
The fur of the rabbit species changes over time from brown to white which helps them to blend with the environment.
Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).
% by mass = (mass solute/mass solution)*100%
mass of the solute = 54.7 g
mass of the solution = mass solute + mass solvent=54.7+500=554.7 g
% by mass = (54.7/554.7)*100%≈0.0986*100% = 9.86%