Answer:
I believe the answer The case study was influenced by bias, and led to incorrect conclusions being drawn. plz correct me if I am wrong
Explanation:
For a single atom, the charge is the number of protons minus the number of electrons
Answer:
The mass defect of a deuterium nucleus is 0.001848 amu.
Explanation:
The deuterium is:
The mass defect can be calculated by using the following equation:
![\Delta m = [Zm_{p} + (A - Z)m_{n}] - m_{a}](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5BZm_%7Bp%7D%20%2B%20%28A%20-%20Z%29m_%7Bn%7D%5D%20-%20m_%7Ba%7D)
Where:
Z: is the number of protons = 1
A: is the mass number = 2
: is the proton's mass = 1.00728 amu
: is the neutron's mass = 1.00867 amu
: is the mass of deuterium = 2.01410178 amu
Then, the mass defect is:
![\Delta m = [1.00728 amu + (2- 1)1.00867 amu] - 2.01410178 amu = 0.001848 amu](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5B1.00728%20amu%20%2B%20%282-%201%291.00867%20amu%5D%20-%202.01410178%20amu%20%3D%200.001848%20amu)
Therefore, the mass defect of a deuterium nucleus is 0.001848 amu.
I hope it helps you!
The particles of objects have
both kinetic and potential energy because these forces are drive by the force
of motion or stillness of an object. Potential energy is the a type of energy
which an object possess however without motion. Kinetic energy in the other
hand, is the energy in motion or if the object moves along from one space to
another with respect to time. They both have these two energies by the presence
of atoms in these entities.