Take a hypothetical sample of exactly 100 grams of the solution.
(16g urea) / (60.06 g urea/mol) = 0.2664 mol urea
((100 g total) - (16g urea)) = 84.0 g H2O = 0.0840 kg H2O
(0.2664 mol) /0.0840 (kg) = 3.17143mol/kg = 3.18m urea
The answer for the first question would be water. It is the substance that is a compound since it is made up of different elements. For the second item, i think the best answer is phosphorus and nitrogen. They are the limiting nutrients. For the last item, the correct answer is reservoirs.
The concentration of hydronium ions equals that to hydroxide ions the answer is A) pH is equal tot he negative log of hydrogen. the pH of water is 7 which equal to 10^-7 of H+ and OH- ions.
(4 mol H2O) x (112 kJ / 3 mol H2O) = 149 kJ
<span>(14.5 g HCl) / (36.4611 g HCl/mol) x (112 kJ / 3 mol HCl) = 14.9 kJ </span>
<span>(475 kJ) / (181 kJ / 2 mol HgO) x (216.5894 g HgO/mol) = 1137 g HgO </span>
<span>(179 kJ) / (181 kJ / 1 mol O2) x (31.99886 g O2/mol) = 31.6 g O2 </span>
<span>(145 kJ) / (112 kJ / 3 mol Cl2) x (70.9064 g Cl2/mol) = 275 g Cl2 </span>
<span>(14.5 g S2Cl2) / (135.0360 g S2Cl2/mol) x (112 kJ / 1 mol S2Cl2) = 12.0 kJ </span>
<span>CaCO3 + 2 NH3 → CaCN2 + 3 H2O; ∆H = –90.0 kJ </span>
<span>(798 kJ) / (90.0 kJ / 2 mol HN3) x (17.03056 g NH3/mol) = 302 g NH3 </span>
<span>(19.7 g H2O) / (18.01532 g H2O/mol) x (90.0 kJ / 3 mol H2O) = 32.8 kJ</span>
The answer is- The solubility of a given solute in a given solvent typically depends on temperature.