Answer: Option (B) is the correct answer.
Explanation:
A covalent compound is a compound formed by sharing of electrons. And, in a covalent network solid atoms are bonded by covalent bonds in a continuous network that is extending throughout the material or solid.
This continuous arrangement of atoms are like a lattice.
For example, diamond is a covalent network solid in which carbon atoms are arranged in a continuous lattice like structure.
Hence, we can conclude that the statement all the atoms are covalently bonded to other atoms to form a lattice-like structure, best describes the structure of covalent network solids.
Answer:
The exceptions to the periodic trends in ionization energy are the first ionization energy of beryllium is higher than that of boron and the first ionization energy of nitrogen is also higher than that of oxygen.
Explanation:
Taking a close look at the figure of first ionization energies, it clearly shows that the first ionization energy of beryllium is higher than that of boron and the first ionization energy of nitrogen is also higher than that of oxygen.
This is as a result of Hund's rule and electron configuration. For example, the first ionization potential electron of beryllium is obtained from a 2s orbital while that of boron comes from a 2p electron. However, for oxygen and nitrogen, their electrons are obtained from 2p orbitals. While spin is uniform for all 2p electrons of nitrogen, it is different for oxygen.
There are a number of ways to express concentration
of a solution. This includes molarity. Molarity is expressed as the number of
moles of solute per volume of the solution. The concentration of the solution
is calculated as follows:
Molarity = 2.0 mole / L solution
<span>2.0 mole / L solution ( 0.50 Liters ) = 1 mole solute</span>
<span>The correct answer is the third option. One mole of solute needed to make 0.50 liters of 2M solution.</span>
Answer:
11 1/2 cm I think lol
Explanation:
it is in between the 11 and 12 mark
Answer:
10 neutron
Explanation:
No.of neutron=Mass no. -- atm no.(or no.of p)
No of neutron=19 -- 9
=10