Answer:
0.44 moles
Explanation:
Given that :
A mixture of water and graphite is heated to 600 K in a 1 L container. When the system comes to equilibrium it contains 0.17 mol of H2, 0.17 mol of CO, 0.74 mol of H2O, and some graphite.
The equilibrium constant ![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
The equilibrium constant 
The equilibrium constant 
Some O2 is added to the system and a spark is applied so that the H2 reacts completely with the O2.
The equation for the reaction is :

Total mole of water now = 0.74+0.17
Total mole of water now = 0.91 moles
Again:
![K_c= \dfrac{[CO][H_2]}{[H_2O]}](https://tex.z-dn.net/?f=K_c%3D%20%20%5Cdfrac%7B%5BCO%5D%5BH_2%5D%7D%7B%5BH_2O%5D%7D)
![0.03905 = \dfrac{[0.17+x][x]}{[0.91 -x]}](https://tex.z-dn.net/?f=0.03905%20%3D%20%20%5Cdfrac%7B%5B0.17%2Bx%5D%5Bx%5D%7D%7B%5B0.91%20-x%5D%7D)
0.03905(0.91 -x) = (0.17 +x)(x)
0.0355355 - 0.03905x = 0.17x + x²
0.0355355 +0.13095
x -x²
x² - 0.13095
x - 0.0355355 = 0
By using quadratic formula
x = 0.265 or x = -0.134
Going by the value with the positive integer; x = 0.265 moles
Total moles of CO in the flask when the system returns to equilibrium is :
= 0.17 + x
= 0.17 + 0.265
= 0.435 moles
=0.44 moles (to two significant figures)
Answer:
They are both planets made out of gas!
They both share methane, hydrogen and helium gases!
To find the mole of a substance, you take the mass divided by the molar mass of that substance~
GEORGEOCTOBER 18, 2012Floor Wax is Harmful to the Environment
Floor wax is applied on floor surfaces to make it scuff-resistant, water-resistant, slip resistant and glossy. It provides a thin, protective and hard surface layer when applied to flooring. Conventional floor wax has five main ingredients and each one of them has detrimental effects on the environment, not to mention the chemical waste created by the continuous upkeep required. The cumulative effects of these ingredients on the environmental render their harmful actions more potent and difficult to reverse.
Answer:
The specific heat of the sample unknown metal is approximately 0.45 J/g °C.
General Formulas and Concepts:
<u>Thermodynamics</u>
Specific Heat Formula: 
- <em>m</em> is mass (g)
- <em>c</em> is specific heat capacity (J/g °C)
- Δ<em>T</em> is the change in temperature
Explanation:
<u>Step 1: Define</u>
<em>Identify variables.</em>
<em>m</em> = 112 g
Δ<em>T</em> = 20.0 °C
<em>q</em> = 1004 J
<u>Step 2: Solve for </u><u><em>c</em></u>
- Substitute in variables [Specific Heat Formula]:

- Simplify:

- Isolate <em>c</em>:

- Round [Sig Figs]:

∴ specific heat capacity <em>c</em> is equal to around 0.45 J/g °C.
---
Topic: AP Chemistry
Unit: Thermodynamics