Answer:
303.29N and 1.44m/s^2
Explanation:
Make sure to label each vector with none, mg, fk, a, FN or T
Given
Mass m = 68.0 kg
Angle θ = 15.0°
g = 9.8m/s^2
Coefficient of static friction μs = 0.50
Coefficient of kinetic friction μk =0.35
Solution
Vertically
N = mg - Fsinθ
Horizontally
Fs = F cos θ
μsN = Fcos θ
μs( mg- Fsinθ) = Fcos θ
μsmg - μsFsinθ = Fcos θ
μsmg = Fcos θ + μsFsinθ
F = μsmg/ cos θ + μs sinθ
F = 0.5×68×9.8/cos 15×0.5×sin15
F = 332.2/0.9659+0.5×0.2588
F =332.2/1.0953
F = 303.29N
Fnet = F - Fk
ma = F - μkN
a = F - μk( mg - Fsinθ)
a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0
303.29-0.35( 666.4 - 303.29*0.2588)/68.0
303.29-0.35(666.4-78.491)/68.0
303.29-0.35(587.90)/68.0
(303.29-205.45)/68.0
97.83/68.0
a = 1.438m/s^2
a = 1.44m/s^2
The Answer that makes the most sense is C.
Answer:
a
Solid Wire
Stranded Wire 
b
Solid Wire
Stranded Wire
Explanation:
Considering the first question
From the question we are told that
The radius of the first wire is 
The radius of each strand is 
The current density in both wires is 
Considering the first wire
The cross-sectional area of the first wire is

= >
= >
Generally the current in the first wire is

=> 
=>
Considering the second wire wire
The cross-sectional area of the second wire is

=> 
=> 
Generally the current is

=> 
=> 
Considering question two
From the question we are told that
Resistivity is 
The length of each wire is 
Generally the resistance of the first wire is mathematically represented as
=>
=>
Generally the resistance of the first wire is mathematically represented as
=>
=>
Answer:
To balance an equation such as Mg + O2 → MgO, the number of the atoms in the product must equal the number of the atoms in the reactant. Mg + O2 --> MgO. To balance an equation, we CAN change coefficients, but NOT SUBSCRIPTS to balance equations.
Explanation:
Answer:
may be upside down alphabet :"T"
Explanation: