Σ/ε
σ = F/A
ε = ΔL/L
F = force
A = area
L = lenght
ΔL = |old lenght - new lenght|
Answer:
1 exercise 2 walking daily 3 practice jogging 4 drinking large amounts of water 5 eating vegetables and fruit 6 minimal of sugars 7 minor 8 Adequate sleep from 6 to 8 hours 9
Explanation:
I don't know more!
Explanation:
Answer:
735watts
Explanation:
Power = Force*distance/time
Given
Force = mg = 50 * 9.8'
Force = 490N
distance = 3m
time = 2s
Substitute
Power = 490*3/2
Power = 1470/2
Power = 735Watts
Hence the minimum power output is 735watts
Answer:
b. Specific heat increases as the number of atoms per molecule increases.
c. Specific heat at constant pressure is higher than at constant volume.
d. Monatomic gases behave like ideal gases.
Explanation:
Specific heat of the gas at constant pressure is usually higher than that of the volume.
i.e.
Cp - Cv = R
where R is usually the gas constant.
However, monoatomic gases are gases that exhibit the behavior of ideal gases. This is due to the attribute of the intermolecular forces which plays a negligible role. Nonetheless, the case is not always true for all temperatures and pressure.
Similarly, the increase in the number of atoms per molecule usually brings about an increase in specific heat. This effect is true as a result of an increase in the total number associated with the degree of freedom from which energy can be separated.
Thus, from above explanation:
Option b,c,d are correct while option (a) is incorrect.