Answer:
H / R = 2/3
Explanation:
Let's work this problem with the concepts of energy conservation. Let's start with point P, which we work as a particle.
Initial. Lowest point
Em₀ = K = 1/2 m v²
Final. In the sought height
= U = mg h
Energy is conserved
Em₀ =
½ m v² = m g h
v² = 2 gh
Now let's work with the tire that is a cylinder with the axis of rotation in its center of mass
Initial. Lower
Em₀ = K = ½ I w²
Final. Heights sought
Emf = U = m g R
Em₀ =
½ I w² = m g R
The moment of inertial of a cylinder is
I =
+ ½ m R²
I= ½
+ ½ m R²
Linear and rotational speed are related
v = w / R
w = v / R
We replace
½
w² + ½ m R² w² = m g R
moment of inertia of the center of mass
= ½ m R²
½ ½ m R² (v²/R²) + ½ m v² = m gR
m v² ( ¼ + ½ ) = m g R
v² = 4/3 g R
As they indicate that the linear velocity of the two points is equal, we equate the two equations
2 g H = 4/3 g R
H / R = 2/3
Answer: question 1 is b I believe
Explanation:
every action has an opposite reaction
The answer is the suns gravity
<span>a. intermolecular attractions.............</span>
Answer:
The Ferris wheel's tangential (linear) velocity if the net centripetal force on the woman is 115 N is <u>3.92 m/s</u>.
Explanation:
Let's use <u>Newton's 2nd Law</u> to help solve this problem.
The force acting on the Ferris wheel is the centripetal force, given in the problem:
.
The mass "m" is the <u>sum</u> of the man and woman's masses:
.
The acceleration is the centripetal acceleration of the Ferris wheel:
.
Let's write an equation and solve for "v", the tangential (linear) acceleration.
The Ferris wheel's tangential velocity is 3.92 m/s.