Through manipulation of equations, we are able to obtain the equation:
![-pOH= log [ OH^{-}]](https://tex.z-dn.net/?f=-pOH%3D%20log%20%5B%20OH%5E%7B-%7D%5D%20)
Then we can transform the equation into:
![[ OH^{-}]= 10^{-pOH}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%3D%2010%5E%7B-pOH%7D%20%20)
Then we are able to plug in the pOH and directly get [OH-]:
![[ OH^{-}] = 10^{-6.48}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%20%3D%2010%5E%7B-6.48%7D%20)
Answer:
heroic
Explanation:
Bayer, a German pharmaceutical company, named the substance it synthesized "heroin", probably from the word heroisch, German for heroic, because in field studies people using the medicine felt "heroic".
BTW, I found this information on this wedsite: https://www.answers.com/Q/Where_did_heroin_get_its_name
Also, if you want some more history about this drug, you can visit this article: https://www.narconon.org/drug-information/heroin-history.html
Answer:
A = 1,13x10¹⁰
Ea = 16,7 kJ/mol
Explanation:
Using Arrhenius law:
ln k = -Ea/R × 1/T + ln(A)
You can graph ln rate constant in x vs 1/T in y to obtain slope: -Ea/R and intercept is ln(A).
Using the values you will obtain:
y = -2006,9 x +23,147
As R = 8,314472x10⁻³ kJ/molK:
-Ea/8,314472x10⁻³ kJ/molK = -2006,9 K⁻¹
<em>Ea = 16,7 kJ/mol</em>
Pre-exponential factor is:
ln A = 23,147
A = e^23,147
<em>A = 1,13x10¹⁰</em>
<em></em>
I hope it helps!
<span>Use the van't Hoff equation:
ln
(
K2
K1
)
=
Δ
HÂş
R
(
1
T1
â’
1
T2
)
ln
(
K2
7.6*10^-3
)
=
-14,200 J
8.314
(
1
298
â’
1
333
)
ln
(
K2
7.6*10^-3
)
=
â’
1708
(
0.00035
)
ln
(
K2
0.0076
)
=
â’
0.598
Apply log rule
a
=
log
b
b
a
-0.598 =
ln
(
e
â’
0.598
)
=
ln
(
1
e
0.598
)
Multiply both sides with e^0.598
K
2
e
0.598
= 0.0076
K
e
0.598
e
0.598
=
0.0076
e
0.598
K
2
=
0.0076
e
0.598
=
4.2
â‹…
10
â’
3
K2
=
4.2
â‹…
10
â’
3</span>
72.0726 is the percent for carbon