<span>Jet streams are the major means of transport for weather systems. A jet stream is an area of strong winds ranging from 120-250 mph that can be thousands of miles long, a couple of hundred miles across and a few miles deep. Jet streams usually sit at the boundary between the troposphere and the stratosphere at a level called the tropopause. This means most jet streams are about 6-9 miles off the ground. Figure A is a cross section of a jet stream.
</span>
The dynamics of jet streams are actually quite complicated, so this is a very simplified version of what creates jets. The basic idea that drives jet formation is this: a strong horizontal temperature contrast, like the one between the North Pole and the equator, causes a dramatic increase in horizontal wind speed with height. Therefore, a jet stream forms directly over the center of the strongest area of horizontal temperature difference, or the front. As a general rule, a strong front has a jet stream directly above it that is parallel to it. Figure B shows that jet streams are positioned just below the tropopause (the red lines) and above the fronts, in this case, the boundaries between two circulation cells carrying air of different temperatures.
Answer:
31.31× 10²³ number of Cl⁻ are present in 2.6 moles of CaCl₂ .
Explanation:
Given data:
Number of moles of CaCl₂ = 2.6 mol
Number of Cl₂ ions = ?
Solution:
CaCl₂ → Ca²⁺ + 2Cl⁻
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
In one mole of CaCl₂ there are two moles of chloride ions present.
In 2.6 mol:
2.6×2 = 5.2 moles
1 mole Cl⁻ = 6.022 × 10²³ number of Cl⁻ ions
5.2 mol × 6.022 × 10²³ number of Cl⁻ / 1mol
31.31× 10²³ number of Cl⁻
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L
<span>C.) Protons, neutrons. Hope it helps :)</span>
Explanation:
local winds are considered breezes while global winds produce mostly storms