Since there are no choices given, my answer might not be what you're looking for. But it can definitely be a correct answer. The technique is called filtration. Filtration is a physical separation to separate the liquid and solid in a mixture. The mixture should be composed of an insoluble solid in a solvent. The mixture is usually passed through a semi-permeable barrier. In this case, a special piece of paper is used. The solvent is the liquid and the solid is the coffee bean grounds. Only the liquid can pass through the paper. The liquid that passes through the paper is generally called a filtrate.
The number of moles in a substance indicates the amount of the substance that contains the same number of particles as 12 g of the Carbon-12 isotope [or equivalent to 6.02 × 10²³] (which is used as a standard in the world of moles).
Now,
if 6.02 × 10²³ atoms are found in 1 mole ofsodium
then let 9.76 × 10¹² atoms are found in x
⇒ x = (9.76 × 10¹² ) ÷ (6.02 × 10²³)
= 1.619 × 10⁻¹¹ mol
Now, mass = moles × molar mass
∴ mass of Na = 1.619 × 10⁻¹¹ mol × 23 g/mol
= 3.72 × 10⁻¹⁰ g
Answer:
A Hydro-pneumatic tank is typically a horizontal pressurized storage tank. Pressurizing this reservoir of water creates a surge free delivery of stored water into the distribution system. Glass-reinforced plastic (GRP) tanks/vessels are used to store liquids underground.
HOPE THIS HELPED!!!!!!!!!!!XDDDDDDD
Answer:
the answer D) will cause milk to go bad
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m