Where are the answers to this question?
Answer:
all of the above
Explanation:
muscular endurance is the ability to be able to do muscular activities for a long period of time. The longer you do it, the better you can handle it and for longer.
Atoms is basic particles ,electrons,neutrons and the Regions of the atom are called electron shells and contain the electrons. So “a neutral core surrounded by mostly empty space”sounds pretty sure to me :)
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
Answer: precise
Explanation:
Three different people weight a standard mass of 2.00 g on the same balance. Each person obtains a reading of 2.32 g for the mass of the standard. These results imply that the balance that was used is precise.
Precision can be defined as the closeness of measured values to each other, for a measuring equipment it is the closeness of the values of readings obtained at different times to each other. It does not necessarily means the measurements are accurate(closeness to the actual value). Therefore, in the case above where three different people measured the same mass on the same balance, and each of them obtained the same value which is different from the standard value. We can say the balance used is precise because the three readings are the same.