The answer to the question is true.
Answer:
A charge of -3
Explanation:
If you look on a periodic table you will find that phosphorus is 3 elements away from the nearest noble gas argon. This means that phosphorus would prefer a charge of -3!
Answer:
Metallic bonding may be described as the sharing of free electrons among a lattice of positively charged metal ions. The structure of metallic bonds is very different from that of covalent and ionic bonds. ... In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize.
It's hard to relate a mole to carbon or sulfur. Imagine if I walked up to you and said, "What's the relation between a dozen and donuts?"
A mole is a form of measurement for atoms, more specifically, 6.02 * 10^23 atoms. I suppose you could relate it to Carbon or Sulfur, since the number of atoms of each are usually measured in moles.
Carbon and Sulfur don't have a set number of moles (Just like donuts don't have to be a dozen), so it's hard to answer your second question.
In the atomic table, the number you see under the element is the molar mass, which is the weight of an a mole of the element. In this way, I guess there's a mole of Carbon and Sulfur present, if we're looking at the periodic table.
-T.B.
Answer:
The red dot represents the melting point of the element, which as stated is approximately 19.9 degrees Celsius and how long it took for the heat to properly completely dissolve it.
The question kind of answers itself however, is there a way to re-word it or is there a different answer you're looking for?