Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
the weight of the balloon is .030 * 10 = 0.3 N
the weight of the gas of volume v is 0.54*10 N
The lifting force of a volume of v m³ of displaced air is 1.29v N
so, we need
1.29*10*v = 0.3 + 0.54*10*v
or
1.29v = 0.03+0.54v
Answer:
a.14 s
b.70 s
Explanation:
a.Let the sidewalk moving in positive x- direction.
Speed of sidewalk relative to ground=
Speed of women relative to sidewalk=v=1.5m/s
The speed of women relative to the ground

Distance=35 m
Time=
Using the formula
Time taken by women to reach the opposite end if she walks in the same direction the sidewalk is moving=
b.If she gets on at the end opposite the end in part (a)
Then, we take displacement negative.
Speed of sidewalk relative to ground=
Speed of women relative to sidewalk=v=-1.5 m/s
The speed of women relative to the ground=
Time=
Hence, the women takes 70 s to reach the opposite end if she walks in the opposite direction the sidewalk is moving.
Answer:
She must be launched with minimum speed of <u>57.67 m/s</u> to clear the 520 m gap.
Step-by-step explanation:
Given:
The angle of projection of the projectile is,
°
Range of the projectile is,
m.
Acceleration due to gravity, 
The minimum speed to cross the gap is the initial speed of the projectile and can be determined using the formula for range of projectile.
The range of projectile is given as:

Plug in all the given values and solve for minimum speed,
.

Therefore, she must be launched with minimum speed of 57.67 m/s to clear the 520 m gap.