Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>
Answer:
polyatomic, ionic
Explanation:
unit that contains two or more atoms covalently bonded together but that has an overall charge is called a(n) polyatomic ion. Many ionic compounds contain such units.
42- 8 = 34 sand dunes must be the answer
hope so it helps
Answer:
This tells us the radial velocity of the object and that the object is approaching or coming towards us.
Explanation:
Certain chemicals radiate with particular wavelengths or colors when their temperature is raised or when they are charged electrically. Also observable are dark strokes separating the spectrum known as absorption lines
These spectral lines of chemicals are well known as stated above and from the phenomenon of Doppler effect, spectroscopy can be used to detect the movement of a distant object by the change of the emitted frequency of the wavelength
The Doppler effect is used in calculating the radial velocity of a distant object due to the fact that an approaching object compresses its emitted signal wavelength while a receding object has a longer wavelength than normal
<span>CH4 + 4 Cl2 → CCl4 + 4 HCl
(4.00 mol CH4) x (1/1) x (0.70) = 2.80 mol CCl4
(4.00 mol CH4) x (4/1) x (0.70) = 11.2 mol HCl
CCl4 + 2 HF → CCl2F2 + 2 HCl
(2.80 mol CCl4) x (2/1) x (0.70) = 3.92 mol HCl
11.2 mol + 3.92 mol = 15.1 mol HCl from both steps</span>