Answer:
14 moles of oxygen needed to produce 12 moles of H2O.
Explanation:
We are given that balance eqaution

We have to find number of moles of O2 needed to produce 12 moles of H2O.
From given equation
We can see that
6 moles of H2O produced by Oxygen =7 moles
1 mole of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=
moles
12 moles of H2O produced by Oxygen=14 moles
Hence, 14 moles of oxygen needed to produce 12 moles of H2O.
The organism could live in the cave, eat the ant, and drink from the lake.
Answer:
Please find the structure attached as an image
Explanation:
Based on the characteristics ending name (-ene) of the organic compound above, it belongs to the ALKENE GROUP. Alkenes are characterized by the possession of a carbon to carbon double bond (C=C) in their structure.
- But-3-ene tells us that the organic compound has four straight carbon atoms with the C=C (double bond) located on the THIRD carbon depending on if we count from right to left or vice versa.
- 2 methyl indicates that the methyl group (-CH3) is located as an attachment on the second carbon (carbon 2).
N.B: In the structure attached below, the counting is from the left to right (→).
Boiling or also called evaporation is the conversion of liquid to gas through the application of heat. This phase change is an endothermic change and is the opposite of condensation from gas to liquid.
Answer : Yes, a precipitate form when a solution of calcium chloride and a solution of mercury(I) nitrate are mixed together.
The net ionic equation will be,

Explanation :
In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The given balanced ionic equation will be,

The ionic equation in separated aqueous solution will be,

In this equation,
are the spectator ions.
By removing the spectator ions from the balanced ionic equation, we get the net ionic equation.
The net ionic equation will be,
