Answer:
490 in^3 = 8.03 L
Explanation:
Given:
The engine displacement = 490 in^3
= 490 in³
To determine the engine piston displacement in liters L;
(NOTE: Both in^3 (in³) and L are units of volume). Hence, to find the engine piston displacement in liters (L), we will convert in^3 to liters (L)
First, we will convert in³ to cm³
Since 1 in = 2.54 cm
∴ 1 in³ = 16.387 cm³
If 1 in³ = 16.387 cm³
Then 490 in³ = (490 in³ × 16.387 cm³) / 1 in³ = 8029.63 cm³
∴ 490 in³ = 8029.63 cm³
Now will convert cm³ to dm³
(NOTE: 1 L = 1 dm³)
1 cm = 1 × 10⁻² m = 1 × 10⁻¹ dm
∴ 1 cm³ = 1 × 10⁻⁶ m³ = 1 × 10⁻³ dm³
If 1 cm³ = 1 × 10⁻³ dm³
Then, 8029.63 cm³ = (8029.63 cm³ × 1 × 10⁻³ dm³) / 1 cm³ = 8.02963 dm³
≅ 8.03 dm³
∴ 8029.63 cm³ = 8.03 dm³
Hence, 490 in³ = 8029.63 cm³ = 8.03 dm³
Since 1L = 1 dm³
∴ 8.03 dm³ = 8.03 L
Hence, 490 in³ = 8.03 L
Answer:
44.8 L
Explanation:
Using the ideal gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At Standard temperature and pressure (STP);
P = 1 atm
T = 273K
Hence, when n = 2moles, the volume of the gas is:
Using PV = nRT
1 × V = 2 × 0.0821 × 273
V = 44.83
V = 44.8 L
Explanation:
it should be option number (D) Iron (III) oxide
<span>Data:
pH = 5.2
[H+] = ?
Knowing that: (</span><span>Equation to find the pH of a solution)</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
<span>
Solving:
</span>
![pH = -log[H+]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%2B%5D)
![5.2 = - log [H+]](https://tex.z-dn.net/?f=5.2%20%3D%20-%20log%20%5BH%2B%5D)
Knowing that the exponential is the opposite operation of the logarithm, then we have:
![[H+] = 10^{-5.2}](https://tex.z-dn.net/?f=%5BH%2B%5D%20%3D%2010%5E%7B-5.2%7D)