The person above above above me is very very good awnswer hope this helps
Answer:
Q = 4019.4 J
Explanation:
Given data:
Mass of ice = 20.0 g
Initial temperature = -10°C
Final temperature = 89.0°C
Amount of heat required = ?
Solution:
specific heat capacity of ice is 2.03 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 89.0°C - (-10°C)
ΔT = 99°C
Q = 20.0 g ×2.03 J/g.°C × 99°C
Q = 4019.4 J
Hello Gary My Man!
Well, as you can clearly see
<span>The atomic number of an element is basically the number of protons it has. So yes, for every element this is different. Now, the mass number of an element as known, is the number of protons+the number of neutrons. So theoretically as we can see, this number should be a whole number, but since there are different isotopes (atoms of the same element with different numbers of neutrons) of each element, most periodic tables take account of that, so they often include decimals as seen.
So in Short, ALL</span> the atoms of a particular element have the SAME EXACT atomic number<span> (</span>number<span> of protons of course). The </span>atoms of different elements have very different numbers of protons. And of course, the MASS number of an atom is the TOTAL number as known, of protons and of course, the neutrons it contains in it.
I Hope my answer has come to your Help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead! :)
(Ps. Mark As Brainliest IF Helped!)
-TheOneAboveAll :D
If u are multiplaying it would be 80 percent more likely
or if u are subtracting it would be 20 percent
Iodine 131 is a radioisotope with a very short half-life of 8.02 days, making it highly radioactive. Frequently used in small doses in thyroid cancers therapies, it is also one of the most feared fission products when accidentally released into the environment. Radiotoxicity of iodine 131.