Answer:
41.66 mL of 12.0 M sulfuric acid are needed.
Explanation:
Concentration of sulfuric acid solution taken =
Volume of the 12.0 M Solution = 
Concentration of required solution = 
Volume of required 1.00 M solution = 
(Dilution)

41.66 mL of 12.0 M sulfuric acid are needed.
The freezing point and the boiling point of a solvent when a non-volatile solute is dissolved in it decrease and increase respectively.
Answer:
1.48 moles of SeCl6 are needed
Explanation:
Based on the reaction:
SeCl6 + O2 → SeO2 + 3Cl2
<em>1 mole of SeCl6 reacts producing 3 moles of Cl2.</em>
To solve this question we need to use the conversion factor:
1mol SeCl6 = 3mol Cl2
As we want to produce 4.45 moles of Cl2, we need:
4.45 mol Cl2 * (1mol SeCl6 / 3mol Cl2) =
<h3>1.48 moles of SeCl6 are needed</h3>
Answer:
V = 1.2 × 10⁻⁶ m³
Explanation:
Volume is equal to length × width × height, since we are given these measurements in the question we can simply plug our numbers into the formula.
V = l × w × h
V = 1.64 x 10⁻² × 1.5 x 10⁻² × 4.8 x 10⁻³
V = 1.2 × 10⁻⁶ m³
Answer: -
1.34 L
Explanation: -
Initial Pressure P 1 = 39.1 bar
Initial Temperature T 1 = 643 K
Let the initial volume be V 1.
Final pressure P 2 = 87.0 bar
Final temperature T 2 = 525 K.
Final volume V 2 = 0.492 L
Using the equation


Plugging in the values
We have
V 1 = 87 bar x 0.492 L x 643 K / (39.1 bar x 525 K)
= 1.34 L
Thus, a gas is contained in a thick-walled balloon. When the pressure changes from 39.1 bar to 87.0 bar the volume changes from 1.34 L to 0.492L and the temperature changes from 643K to 525K