Answer:
The ratio [A-]/[HA] increase when the pH increase and the ratio decrease when the pH decrease.
Explanation:
Every weak acid or base is at equilibrium with its conjugate base or acid respectively when it is dissolved in water.
⇄ 
This equilibrium depends on the molecule and it acidic constant (Ka). The Henderson-Hasselbalch equation,
![pH = pKa + Log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20Log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
shows the dependency between the pH of the solution, the pKa and the concentration of the species. If the pH decreases the concentration of protons will increase and the ratio between A- and AH will decrease. Instead, if the pH increases the concentration of protons will decreases and the ratio between A- and AH will increase.
Answer:
electroluminescence is a production of light by the flow of electrons, as within certain crystals. An example is at most resataurants with a bright sign that either says open or closed.
Explanation:
Answer:
Dissolve 226 g of KCl in enough water to make 1.5 L of solution
Explanation:
1. Calculate the moles of KCl needed

2. Calculate the mass of KCl

3. Prepare the solution
- Measure out 224 g of KCl.
- Dissolve the KCl in a few hundred millilitres of distilled water.
- Add enough water to make 1.5 L of solution.
Mix thoroughly to get a uniform solution.
- Due to the inability of the reaction to take place, the yield of 1-Bromobutane would drop.
- Since 1-Butanol won't react with the additional sodium bromide, bromination won't happen.
- If water had been supplied, the equilibrium would have shifted extremely far to the left, preventing the reactants from interacting with the acid and favoring the yield of 1-bromobutane instead.
<h3>What is Bromination?</h3>
- When a substance undergoes bromination, bromine is added to the compound as a result of the chemical reaction.
- After bromination, the result will have different properties from the initial reactant.
- For example, an alkene is brominated by electrophilic addition of
. - Benzene ring bromination by electrophilic aromatic substitution.
Learn more about Bromine here:
brainly.com/question/862562
#SPJ4
Answer:
The mass defect of a deuterium nucleus is 0.001848 amu.
Explanation:
The deuterium is:
The mass defect can be calculated by using the following equation:
![\Delta m = [Zm_{p} + (A - Z)m_{n}] - m_{a}](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5BZm_%7Bp%7D%20%2B%20%28A%20-%20Z%29m_%7Bn%7D%5D%20-%20m_%7Ba%7D)
Where:
Z: is the number of protons = 1
A: is the mass number = 2
: is the proton's mass = 1.00728 amu
: is the neutron's mass = 1.00867 amu
: is the mass of deuterium = 2.01410178 amu
Then, the mass defect is:
![\Delta m = [1.00728 amu + (2- 1)1.00867 amu] - 2.01410178 amu = 0.001848 amu](https://tex.z-dn.net/?f=%5CDelta%20m%20%3D%20%5B1.00728%20amu%20%2B%20%282-%201%291.00867%20amu%5D%20-%202.01410178%20amu%20%3D%200.001848%20amu)
Therefore, the mass defect of a deuterium nucleus is 0.001848 amu.
I hope it helps you!