Answer:
Ionic character
A. PF₃ > PBr₃ > PCl₃
B. BF₃ > CF₄ > NF₃
C. TeF₄ > BrF₃ > SeF₄
Explanation:
The most electronegative element is fluorine, followed chlorine, phosphorous nitrogen etc.
- Atoms with high electronegativity tend to form negative ions.
- Ionic compounds formed between elements with high electronegativity difference.
- % ionic character is directly proportional to electronegativity difference.
- According to Pauling Scale E.n for F(4.0), O(3.5), N(3.0), C(2.5), B(2.0), P(2.19), Se(2.55) , Te (2.1), Cl(3.16) and Br(2.96)
- ΔE.N (Electronegativity difference) between( P and F = 4 - 2.19 = 1.81), (P and Br = 2.96 - 2.19 = 0.77) , (P and Cl = 3.16 - 2.96 = 0.2 )
- ΔE.N (Electronegativity difference) between( N and F = 4 - 3 = 1), (B and F = 4 - 2 = 2) , (C and F = 4 - 2.5 = 1.5 )
- ΔE.N (Electronegativity difference) between( Se and F = 4 - 2.55 = 1.45), (F and Te = 4 - 2.1 = 1.9) , (F and Br = 4 - 2.19 = 1.81 )
The formula of compound is LiClO4.3H2O
<em><u>calculation</u></em>
- <em><u> </u></em>find the mole of each element
that is moles for Li,Cl,O and that of H2O
- moles = % composition/ molar mass
For Li = 4.330/ 6.94 g/mol= 0.624 moles
Cl=22.10/35.5=0.623 moles
39.89/16 g/mol =2.493 moles
H20= 33.69/18 g/mol= 1.872 moles
- find the mole ratio by dividing each moles by smallest number of mole ( 0.624 moles)
that is for Li= 0.624/0.623= 1
Cl= 0.623/0.623=1
O = 2.493/0.623 =4
H2O= 1.872/0.623=3
<h3>Therefore the formula=LiClO4.3H2O</h3><h3 />
6.349 g mass of anhydrous magnesium sulfate will remain.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 × 1023 of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
Molar mass MgSO₄.7 H₂O = 246.52 g/mol


0.0527 moles
Molar mass MgSO₄ = 120.4 g/mol
Mass of anhydrous magnesium sulfate :
( 0.0527 x 120.4 ) => 6.349 g
Learn more about moles here:
brainly.com/question/8455949
#SPJ1
Answer:
48%
Explanation:
Based on Gay-Lussac's law, the pressure is directly proportional to the temperature. To solve this question we must assume the temperature increases and all CO2 remains without reaction. The equation is:
P1T2 = P2T1
<em>Where Pis pressure and T absolute temperature of 1, initial state and 2, final state of the gas:</em>
P1 = 10.0atm
T2 = 1420K
P2 = ?
T1 = 730K
P2 = 10.0atm*1420K / 730K
P2 = 19.45 atm
The CO2 reacts as follows:
2CO2 → 2CO+ O2
Where 2 moles of gas react producing 3 moles of gas
Assuming the 100% of CO2 react, the pressure will be:
19.45atm * (3mol / 2mol) = 29.175atm
As the pressure rises just to 24.1atm the moles that react are:
24.1atm * (2mol / 19.45atm) = 2.48 moles of gas are present
The increase in moles is of 0.48 moles, a 100% express an increase of 1mol. The mole percent that descomposes is:
0.48mol / 1mol * 100 = 48%