By the number of Electrons in the valence shell if 1=group 1 if 2 its group 2 and so on Valence means outermost shell
Answer:
Approximately
.
Explanation:

The actual yield of
was given. The theoretical yield needs to be calculated from the quantity of the reactant.
Balance the equation for the hydrolysis of water:
.
Note the ratio between the coefficient of
and
:
.
This ratio will be useful for finding the theoretical yield of
.
Look up the relative atomic mass of hydrogen and oxygen on a modern periodic table.
Calculate the formula mass of
and
:
.
.
Calculate the number of moles of molecules in
of
:
.
Make use of the ratio
to find the theoretical yield of
(in terms of number of moles of molecules.)
.
Calculate the mass of that approximately
of
(theoretical yield.)
.
That would correspond to the theoretical yield of
(in term of the mass of the product.)
Given that the actual yield is
, calculate the percentage yield:
.
Answer:
If matter is heated and thus its temperature rises more and more, it can be seen that the particles contained in it move ever faster – be it the relatively free movement of the particles in gases or the oscillation around a rest position in solids. The temperature of a substance can therefore be regarded as a measure of the velocity of the particles it contains. With a higher temperature and thus higher particle
Explanation:
<h2>
Answer:</h2>
ZINC
<h2>
Explanation:</h2>
<em>To identify the element based on the informartion given, we have to find the molar mass since this mass is unique to each element.</em>
Molar mass = mass ÷ moles
<em>We already know the mass based on the question, as such we now need to find the # of moles.</em>
Since 1 mole contains 6.02214 × 10²³ atoms
then let x moles contain 4.19 × 10²³ atoms <em>(given in the question)</em>
<em> </em><em> </em> ⇒ x = (4.19 × 10²³ atoms × 1 mol) ÷ 6.02214 × 10²³ atoms
x = 0.69577 mol
<em>Now that we have the moles we can substitute it into the molar mass equation and solve for the molar mass.</em>
⇒ molar mass = 45.6 g ÷ 0.69577 mol
⇒ molar mass ≈ 65.54 g/mol
This molar mass is closest to that of ZINC.
Answer:
Fe₂O₃
Explanation:
To solve this question we must find the moles of Iron in 1.68g. With the difference of the masses we can find the moles of oxygen. The formula will be obtained with the ratio of both amount of moles:
<em>Moles Fe:</em>
1.68g * (1mol / 56g) =0.03moles
<em>Moles O:</em>
2.40g-1.68g = 0.72g * (1mol/16g) = 0.045moles
The ratio O/Fe is:
0.045moles / 0.03moles = 1.5 moles. this ratio is obtained if the formula is:
<h3>Fe₂O₃</h3>