The molarity of the solution is 0.1625M.
<h3>What do you meant by Molarity</h3>
Molarity is the amount of a substance in a certain volume of solution. Molarity is defined as the moles of solute per litres of a solution .
Molarity → no of moles / Volume (L)
SI unit of Molarity is M or mol/ L
We have given here the mass of solution is 3.10×10²g .
molality of the solution is 0.125m
Molality → no of moles / mass in kg
→ 0.125×3.10×10²/ 1000
→ no.of moles = 0.0162
For molarity we can assume volume as 1000 ml .
Molarity = 0.0162×1000/ 100
Molarity →0.162 M.
So, the molarity of solution will be 0.162M.
to Learn more about Molarity click here brainly.com/question/8732513
#SPJ4
Answer:
energy
Explanation:
The photon of light that is emitted as an electron drops back to its original orbit is energy and this energy is released during de-excitation process.
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
Answer:
H₂(g) + Cl₂(g) → 2HCl(g) + 185kJ
Explanation:
In a chemical reaction, enthalpy of reaction ΔH is a thermodynamic constant that gives information if the reaction is exothermic (Produce heat if reacts) or endothermic (Consume heat if reacts).
In the reaction:
H₂(g) + Cl₂(g) → 2HCl(g) ΔH = -185kJ
As ΔH <0, the reaction is exothermic, that means, <em>produce heat</em>, writing a balanced thermochemical equation:
<em>H₂(g) + Cl₂(g) → 2HCl(g) + 185kJ</em>
<em></em>
The enthalpy is as a product beacause an exothermic reaction produces heat.
I hope it helps!
<em></em>
Answer:
The correct answer is 187.7 J/Jg.
Explanation:
The formula for finding the specific heat of fusion is,
Specific heat of fusion = Q/m
Here Q is the heat energy added, signified in kJ, and m is the mass of the object in kg.
Based on the given information, the heat energy added or Q is 869 kJ and the mass of the ice is 4.6 Kg
Now putting the values in the formula we get,
Specific heat of fusion = Q/m
Specific heat of fusion = 863 kJ / 4.6 Kg = 187.7 J/Kg
Ice floats because it is about 9% less dense than liquid water. ... The heavier water displaces the lighter ice, so ice floats to the top. One consequence of this is that lakes and rivers freeze from top to bottom, allowing fish to survive even when the surface of a lake has frozen over