This is a defective, misleading question, and should never be asked in a Physics class.
There is no such thing as the force due to the impact.
If you know how long it takes the clam to stop once it begins to hit the dirt,
then you can calculate the impulse transferred to it, and tease a force out
of that. But the question doesn't give us the time.
It depends on the material of the surface. Was the clam dropped onto dirt ?
Into a dumpster ? Onto grass ? Concrete ? Styrofoam ? Mud ? The answer
is different in each case, and we still need to know the short length of time
AFTER it first encountered whatever surface brought it to rest.
I would kick this question back to the Physics teacher. It's meaningless,
and the longer you try to work on it, the more nonsense you'll plant into
your head that'll need to be dug out later.
Answer:
Seatbelts stop you
Explanation:
Any passengers in the car will also be decelerated to rest if they are strapped to the car by seat belts.
Answer:
a) the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
b) the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Explanation:
a) the polarization the determined wave oscillates the electric field, which is the z axis
As the wave travels on the negative x-axis and the magnetic field is perpendicular, this field goes on the positive y-axis
the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
be) in the case of a polarization in the xi plane the magnetic field must go in the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
<span> attraction between the relative abundance of electrons in one object and protons in the other
</span>
Answer:

Explanation:
In order to convert the work function of cesium from electronvolts to Joules, we must use the following conversion factor:

In our problem, the work function of cesium is

so, we can convert it into Joules by using the following proportion:
