Answer:
6.86 × 10²⁴ kg
Explanation:
The mass of the earth m = density of earth, ρ × volume of earth, V
m = ρV
The density of the earth, ρ = 5515 kg/m³ and since the earth is a sphere, its volume is the volume of a sphere V = 4πr³/3 where r = radius of the earth = 6.67 × 10⁶ m
Since m = ρV
m = ρ4πr³/3
So, substituting the values of the variables into the equation for the mass of the earth, m, we have
m = 5515 kg/m³ × 4π(6.67 × 10⁶ m)³/3
m = 5515 kg/m³ × 4π × 296.741 × 10¹⁸ m³/3
m = 5515 kg/m³ × 1189.9639π × 10¹⁸ m³/3
m = 6546105.64378π × 10¹⁸ kg/3
m = 20565197.400122 × 10¹⁸ kg/3
m = 6855065.8 × 10¹⁸ kg
m = 6.8550658 × 10²⁴ kg
m ≅ 6.86 × 10²⁴ kg
Answer:
Atoms found in nature are either stable or unstable. ... An atom is unstable (radioactive) if these forces are unbalanced; if the nucleus has an excess of internal energy. Instability of an atom's nucleus may result from an excess of either neutrons or protons
Cosmic background radiation is electromagnetic radiation from the sky with no discernible source. The origin of this radiation depends on the region of the spectrum that is observed.
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
Explanation:
When hot water is poured on the can in a bucket of cold water, the can crushes off means it gets unshaped