The question is incomplete, here is the complete question:
A chemist prepares a solution of iron (III) bromide
by measuring out 2.78 g of iron (III) bromide into a 50. mL volumetric flask and filling the flask to the mark with water.
Calculate the concentration in mmol/L of the chemists iron (III) bromide solution. Be sure your answer has the correct number of significant digits.
<u>Answer:</u> The concentration of iron(III) bromide solution is 0.19 M
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Given mass of iron(III) bromide = 2.78 g
Molar mass of iron(III) bromide = 298.6 g/mol
Volume of solution = 50. mL
Putting values in above equation, we get:

Hence, the concentration of iron(III) bromide solution is 0.19 M
The overall concentration of hydrogen ions is inversely related to its pH and can be measured on the pH scale Figure 1 It is neither acidic nor basic, and has a pH of 7.0 Anything below 7.0 is ranging from 0.0 to 6.9)is acidic and anything above 7.0 from 7.1 to 14.0 is alkaline.
Your speed is increased by 5 m/s in 2 seconds, so your acceleration is 5/2=2.5 m/s/s, or 2.5 metres per second squared.
Answer:
75000 Hz
Explanation:
f = V / λ (f= frequency, v=velocity of wave, lambda= wavelength)
alternatively, f = c / λ (f= frequency, c= speed of light- 3.00x10^8 m/s, lambda= wavelength)
f= [3.00x10^8 m/s]/[4000 m]
=75000 Hz
Answer:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Explanation:
H₂²⁺(aq) + O₂²⁻(aq) + Mg²⁺(aq) + SO₃²⁻(aq) → Mg²⁺(aq) + SO²⁻₄(aq) + H₂O(l)
A careful observation of the equation above, shows that the equation is already balanced.
To obtain the net ionic equation, we simply cancel Mg²⁺ from both side of the equation as shown below:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)