The Answer is A, the iris dilates the pupil.
There are some missing data in the problem. The full text is the following:
"<span>A </span>real<span> (</span>non-Carnot<span>) </span>heat engine<span>, </span>operating between heat reservoirs<span> at </span>temperatures<span> of 710 K and 270 K </span>performs 4.1 kJ<span> of </span>net work<span>, and </span>rejects<span> 9.7 </span>kJ<span> of </span>heat<span>, in a </span>single cycle<span>. The </span>thermal efficiency<span> of a </span>Carnot heat<span> engine, operating between the same </span>heat<span> reservoirs, in percent, is closest to.."
Solution:
The efficiency of a Carnot cycle working between cold temperature </span>

and hot temperature

is given by

and it represents the maximum efficiency that can be reached by a machine operating between these temperatures. If we use the temperatures of the problem,

and

, the efficiency is

Therefore, the correct answer is D) 62 %.
Answer:
0.301 m
Explanation:
Torque = Force × Radius
τ = Fr
40.0 Nm = 133 N × r
r = 0.301 m
The mechanic must apply the force 0.301 m from the nut.
Answer:

Explanation:
Given that,
The radius of sphere, r = 5 cm = 0.05 m
Net charge carries, q = 7.5 µC = 7.5 × 10⁻⁶ C
We need to find the surface charge density on the sphere. Net charge per unit area is called the surface charge density. So,

So, the surface charge density on the sphere is
.