A water solution is found to have a molar oh- concentration of 3.2 x 10-5. the solution would be classified as neutral.
The concentration of hydroxide ions (OH-) is measured by pOH. It is a way of expressing how alkaline a solution is. At 25 degrees Celsius, aqueous solutions with pOH values of 7 or less are neutral, whereas those with pOH values of 7 or more are acidic. The hydrogen ion potential is known as pH. The potential of hydroxide ions is known as pOH. 2. It is a scale used to estimate the hydrogen ion (H+) concentration in the solution. The hydroxide ion (OH-) concentration of the solution is measured using this scale.
pH + pOH = 14
pOH = 3.2x 10-5
[OH-] = 10^(-pOH) =10^(- 3.2x 10-5)
= 0.99
From each drop-down menu, a solid has (a definite volume and a definite shape), a Liquid has (a definite volume) and gas has ( non of the above)
<h3>The features of different states of Matter:</h3>
Matter is defined as anything that has weight and occupies space.
There are three states of matter that is in existence which include:
- Solid: The particles of solid are closely packed together and vibrate around fixed axes. That is why they have a definite shape and volume.
- Liquid: The particles of liquid, though attracted to each other,move freely over each other. That is why they have definite volume but not a definite shape.
Therefore, a liquid occupies the shape of its container.
- Gas: The particles of gas contain scattered molecules that are dispersed across a given volume.
Therefore, a gas neither has a definite shape nor volume.
Learn more about matter here:
brainly.com/question/3998772
Answer:
B
Explanation:
B is the best showing of a chemical reaction out of the choices
The AP Biology teacher is measuring out 638.0 g of dextrose (C6H12O6) for a lab the moles of dextrose is this equivalent to is 3.6888 moles.
<h3>What are moles?</h3>
A mole is described as 6.02214076 × 1023 of a few chemical unit, be it atoms, molecules, ions, or others. The mole is a handy unit to apply due to the tremendous variety of atoms, molecules, or others in any substance.
To calculate molar equivalents for every reagent, divide the moles of that reagent through the moles of the restricting reagent. The calculation is follows:
- 655/12 x 6 + 12+ 16 x 6
- = 655/ 180 = 3.6888 moles.
Read more about moles:
brainly.com/question/24322641
#SPJ1