Answer:
C. are often metals
and
D. have high conductivity
Answer:
x = 2 meters.
Explanation:
Let the position (distance) of fulcrum to the load be x.
Given the following data;
Load = 40 kg
Effort (force) = 40 Newton
Effort arm = 4 - x
To find the position of the fulcrum, we would use the expression;
Effort * effort arm = load * load arm
40 * (4 - x) = 40 * x
160 - 40x = 40x
160 = 40x + 40x
160 = 80x
x = 160/80
x = 2 meters
Therefore, the position (distance) of fulcrum to the load is 2 meters.
Answer:
Explained
Explanation:
Resistance R in a current flow through an object is given by

ρ = resistivity of the material
L= length of the object
A= area of cross section
clearly resistance is directly dependent on length of the object.This means greater the length larger will be resistance to current.
thermal resistance R_th is given by

L= length of the object
A= area of cross section
K = Conductivity of the material
thermal resistance is also is directly dependent on length of the object.This means greater the length larger will be resistance to current.
Answer:
3.085 [m].
Explanation:
1) The rule:
m₁*g*l₁=m₂*g*l₂, where m₁ and l₁ - the mass and distance for the small child, m₂ and l₂ - for the big child;
2) according to the condigion l₁+l₂=5, then
3) it is possible to make up the system:

4) finally, l₁=145/47≈3.085 [m].