It probably is the actual answer.
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )
We will make the comparison between each of the sizes against the known wavelengths.
In the case of the <em>hydrogen atom</em>, we know that this is equivalent to
m on average, which corresponds to the wavelength corresponding to X-rays.
In the case of the <em>Virus</em> we know that it is oscillating in a size of 30nm to 200 nm, so the size of the virus is equivalent to the range of the wavelength of an ultraviolet ray.
In the case of <em>height</em>, it fluctuates in a person around
to
m, which falls to the wavelength of a radio wave.