1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
11

In a rectangular coordinate system a positive point charge q=6.00×10−9 C q=6.00×10−9 C is placed at the point x = +0.150 m, y =

0, and an identical point charge is placed at x = -0.150 m, y = 0. Find the x- and y-components, the magnitude, and the direction of the electric field at the following points: (a) the origin; (b) x = 0.300 m, y = 0; (c) x = 0.150 m, y = -0.400 m; (d) x = 0, y = 0.200 m.
Physics
1 answer:
jeka943 years ago
5 0

Answer:

a) E_net = 0

b) E_net = 2663.7 N/C

c) E_net = 525.915 N/C

d) E_net = 1380.864 N/C

Explanation:

Given:

- The positions of charges are = ( 0.15 , 0 ) & (-0.15 , 0 )

- Both charges have equal magnitude Q = +6*10^-19 C

Find:

Find the magnitude of the electric field at:

(a) the origin;

(b) x = 0.300 m, y = 0;

(c) x = 0.150 m, y = -0.400 m;

(d) x = 0, y = 0.200 m.

Solution:

- The Electric field generated by an charged particle Q at a distance r is given by:

                                 E = k*Q / r^2

- Where, k is the coulomb's constant = 8.99 * 10^9

Part a) @ ( 0 , 0 )

- First we see that the charges +Q_1 and +Q_2 produce an electric field equal but opposite in nature because the distance r from origin and magnitude of charge is same. So the sum of Electric fields:

                                 E_1 + E_3 = 0

Part b) @ ( 0.3 , 0 )

- The Electric field due to charge Q_1 is expressed by:

                                  E_1 = k*Q_1 / r_1^2

Where the distance r from first charge to ( 0.3 , 0 ) is:

                                  r_1 = 0.3 - 0.15 = 0.15 m

- The Electric field due to charge Q_2 is expressed by:

                                  E_2 = k*Q_2 / r_2^2

Where the distance r from second charge to ( 0.3 , 0 ) is:

                                  r_2 = 0.3 - (-0.15) = 0.45 m

- The net Electric Field at point ( 0.3 , 0 ) is:

                                  E_net = E_1 + E_2

                                  E_net = k*Q* ( ( 1 / r_1^2) + ( 1 / r_2^2) )

Plug values in:

                                 E_net = (8.99*10^9)*6*10^-9* ( ( 1 / 0.15^2) + ( 1 / 0.45^2)))

                                 E_net = 2663.7 N/C

Part c) @ ( 0.15 , -0.4 )

- The Electric field due to charge Q_1 is expressed by:

                                  E_1 = k*Q_1 / r_1^2

Where the distance r from first charge to ( 0.15 , -0.4 ) is:

                                  r_1 = 0.4 m

- The Electric field due to charge Q_2 is expressed by:

                                  E_2 = k*Q_2 / r_2^2

Where the distance r from second charge to ( 0.15 , -0.4 ) is:

                                  r_2 = sqrt (0.3^2 + 0.4^2) = 0.5 m

- The net Electric Field at point ( 0.15 , -0.4 ) is:

                                  E_vertical = E_1 + E_2*sin(a)

                                  E_horizontal = E_2*cos(a)

Where,  a is the angle between x -axis and point  ( 0.15 , -0.4 ):

                                  cos(a) = 0.3 / r_2 = 0.3/0.5 = 3/5

                                  sin(a) = 0.4 / r_2 = 0.4/0.5 = 4/5

Hence,

                              E_vertical = k*Q* ( ( 1 / r_1^2) + ( sin(a)/ r_2^2)

                              E_v = (8.99*10^9)*6*10^-9* ( ( 1 / 0.4^2) + ( 0.8 / 0.5^2 )

                              E_v = 509.733 N/C

And,

                              E_Horizontal = k*Q* ( ( 1 / r_1^2) + ( sin(a)/ r_2^2)

                              E_h = (8.99*10^9)*6*10^-9*( 0.6 / 0.5^2 )

                              E_h = 129.456 N/C  

Hence,      

                              E_net = sqrt ( E_vertical^2 + E_horizontal^2)

                              E_net = sqrt ( 509.733^2 + 129.456^2)

                              E_net = 525.915 N/C

                                 

Part d) @ ( 0 , 0.2 )

- The Electric field due to charge Q_1 is expressed by:

                                  E_1 = k*Q_1 / r_1^2

Where the distance r from first charge to ( 0 , 0.2 ) is:

                                  r_1 = sqrt (0.15^2 + 0.2^2) = 0.25 m

- The Electric field due to charge Q_2 is expressed by:

                                  E_2 = k*Q_2 / r_2^2

Where the distance r from second charge to ( 0 , 0.2 ) is:

                                  r_2 = sqrt (0.15^2 + 0.2^2) = 0.25 m

- The net Electric Field at point ( 0 , 0.2 ) is:

                                  E_vertical = E_1*sin(a) + E_2*sin(a)

                                  E_vertical = 2*E*sin(a)

                                  E_horizontal = 0 ... Equal but opposite magnitude

Where,  a is the angle between x -axis and point  ( 0 , 0.2 ):

                                sin(a) = 0.2 / r_2 = 0.2/0.25 = 4/5                                

Hence,

                              E_vertical = 2*k*Q*sin(a)*( 1 / r_1^2)

                              E_v = 2*0.8*(8.99*10^9)*6*10^-9* ( 1 / 0.25^2)

                              E_v = 1380.864 N/C  

Hence,      

                              E_net = E_vertical                              

                              E_net = 1380.864 N/C

You might be interested in
. A 13-g goldfinch has a speed of 8.5 m/s. What is its kinetic energy?
lesya692 [45]
PLEASE PRESS THE “Thanks!” BUTTON! :)
13 g —> 0.013 kg
KE = 1/2(m)(v)^2
KE = 1/2(0.013)(8.5)^2
KE = 0.47 J
3 0
2 years ago
When an average force F is exerted over a certain distance on a shopping cart of mass m, its kinetic energy increases by 12mv2.
VMariaS [17]

Answer:

A)d=\dfrac{1}{2F}mv^2

B)\Delta KE'=2\times \dfrac{1}{2}mv^2

Explanation:

Given that

Force  = F

Increase in Kinetic energy = \dfrac{1}{2}mv^2

\Delta KE=\dfrac{1}{2}mv^2

we know that

Work done by all the forces =change in the kinetic energy

a)

Lets distance = d

We know work done by force F

W= F .d

F.d=ΔKE

F.d=\dfrac{1}{2}mv^2

d=\dfrac{1}{2F}mv^2

b)

If the force become twice

F' = 2 F

F'.d=ΔKE'

2 F .d = ΔKE'                          ( F.d =Δ KE)

2ΔKE = ΔKE'

\Delta KE'=2\times \dfrac{1}{2}mv^2

Therefore the final kinetic energy will become the twice if the force become twice.

8 0
3 years ago
A ball is thrown vertically upward. What is its acceleration right before it hits the earth?
Bezzdna [24]
<span>The entire time the ball is in the air, its acceleration is 9.8 m/s2 down provided this occurs on the surface of the Earth. Note that the acceleration can be either 9.8 m/s2 or -9.8 m/s2.
[Please Mark as Brainliest]
</span>
7 0
4 years ago
Read 2 more answers
Air enters a turbine operating at steady state at 8 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinet
kobusy [5.1K]

Answer:

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

Explanation:

To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables

Mathematically this can be determined as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}

Where

Temperature at inlet of turbine

Temperature at exit of turbine

Pressure at exit of turbine

Pressure at exit of turbine

The steady flow Energy equation for an open system is given as follows:

m_i = m_0 = mm(h_i+\frac{V_i^2}{2}+gZ_i)+Q = m(h_0+\frac{V_0^2}{2}+gZ_0)+W

Where,

m = mass

m(i) = mass at inlet

m(o)= Mass at outlet

h(i)= Enthalpy at inlet

h(o)= Enthalpy at outlet

W = Work done

Q = Heat transferred

v(i) = Velocity at inlet

v(o)= Velocity at outlet

Z(i)= Height at inlet

Z(o)= Height at outlet

For the insulated system with neglecting kinetic and potential energy effects

h_i = h_0 + WW = h_i -h_0

Using the relation T-P we can find the final temperature:

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}\\

\frac{T_2}{1600K} = (\frac{0.8bar}{8nar})^{(\frac{1.4-1}{1.4})}\\ = 828.716K

From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

W = h_i -h_0W = C_p (T_1-T_2)W = 1.005(1600 - 828.716)W = 775.140kJ/Kg

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

4 0
3 years ago
Mga halimbawa ng metapora​
faust18 [17]

Answer:

UMm If i understood ide answer

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • A boy pushes a cart with a constant velocity of 0.5m/s by applying a force of 60 N. What is the total frictional force acting on
    9·1 answer
  • The critical angle for refraction from glass to air is 30° and that from water to air is 37°.Find the critical angle for refract
    7·1 answer
  • Which of the following statements about inductors are correct? A. When an inductor and a resistor are connected in series with
    12·1 answer
  • Which of these changes would solidify a substance?
    7·1 answer
  • To maintain your body temperature your body converts chemical potential energy into thermal energy true or false
    10·2 answers
  • A ship travels with velocity given by 12, with current flowing in the direction given by 11 with respect to some co-ordinate axe
    7·1 answer
  • How much work is done by gravity when a pine cone (of mass 50g) falls from the top of a tree, 9 m high?
    10·1 answer
  • The velocity of sound in air saturated with water vapour at 30°C
    10·1 answer
  • Which of these objects has memetic energy
    12·1 answer
  • Erwin Schrödinger developed the quantum model of the atom. What scientific knowledge was necessary for Schrödinger’s work?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!