1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Georgia [21]
3 years ago
11

In a rectangular coordinate system a positive point charge q=6.00×10−9 C q=6.00×10−9 C is placed at the point x = +0.150 m, y =

0, and an identical point charge is placed at x = -0.150 m, y = 0. Find the x- and y-components, the magnitude, and the direction of the electric field at the following points: (a) the origin; (b) x = 0.300 m, y = 0; (c) x = 0.150 m, y = -0.400 m; (d) x = 0, y = 0.200 m.
Physics
1 answer:
jeka943 years ago
5 0

Answer:

a) E_net = 0

b) E_net = 2663.7 N/C

c) E_net = 525.915 N/C

d) E_net = 1380.864 N/C

Explanation:

Given:

- The positions of charges are = ( 0.15 , 0 ) & (-0.15 , 0 )

- Both charges have equal magnitude Q = +6*10^-19 C

Find:

Find the magnitude of the electric field at:

(a) the origin;

(b) x = 0.300 m, y = 0;

(c) x = 0.150 m, y = -0.400 m;

(d) x = 0, y = 0.200 m.

Solution:

- The Electric field generated by an charged particle Q at a distance r is given by:

                                 E = k*Q / r^2

- Where, k is the coulomb's constant = 8.99 * 10^9

Part a) @ ( 0 , 0 )

- First we see that the charges +Q_1 and +Q_2 produce an electric field equal but opposite in nature because the distance r from origin and magnitude of charge is same. So the sum of Electric fields:

                                 E_1 + E_3 = 0

Part b) @ ( 0.3 , 0 )

- The Electric field due to charge Q_1 is expressed by:

                                  E_1 = k*Q_1 / r_1^2

Where the distance r from first charge to ( 0.3 , 0 ) is:

                                  r_1 = 0.3 - 0.15 = 0.15 m

- The Electric field due to charge Q_2 is expressed by:

                                  E_2 = k*Q_2 / r_2^2

Where the distance r from second charge to ( 0.3 , 0 ) is:

                                  r_2 = 0.3 - (-0.15) = 0.45 m

- The net Electric Field at point ( 0.3 , 0 ) is:

                                  E_net = E_1 + E_2

                                  E_net = k*Q* ( ( 1 / r_1^2) + ( 1 / r_2^2) )

Plug values in:

                                 E_net = (8.99*10^9)*6*10^-9* ( ( 1 / 0.15^2) + ( 1 / 0.45^2)))

                                 E_net = 2663.7 N/C

Part c) @ ( 0.15 , -0.4 )

- The Electric field due to charge Q_1 is expressed by:

                                  E_1 = k*Q_1 / r_1^2

Where the distance r from first charge to ( 0.15 , -0.4 ) is:

                                  r_1 = 0.4 m

- The Electric field due to charge Q_2 is expressed by:

                                  E_2 = k*Q_2 / r_2^2

Where the distance r from second charge to ( 0.15 , -0.4 ) is:

                                  r_2 = sqrt (0.3^2 + 0.4^2) = 0.5 m

- The net Electric Field at point ( 0.15 , -0.4 ) is:

                                  E_vertical = E_1 + E_2*sin(a)

                                  E_horizontal = E_2*cos(a)

Where,  a is the angle between x -axis and point  ( 0.15 , -0.4 ):

                                  cos(a) = 0.3 / r_2 = 0.3/0.5 = 3/5

                                  sin(a) = 0.4 / r_2 = 0.4/0.5 = 4/5

Hence,

                              E_vertical = k*Q* ( ( 1 / r_1^2) + ( sin(a)/ r_2^2)

                              E_v = (8.99*10^9)*6*10^-9* ( ( 1 / 0.4^2) + ( 0.8 / 0.5^2 )

                              E_v = 509.733 N/C

And,

                              E_Horizontal = k*Q* ( ( 1 / r_1^2) + ( sin(a)/ r_2^2)

                              E_h = (8.99*10^9)*6*10^-9*( 0.6 / 0.5^2 )

                              E_h = 129.456 N/C  

Hence,      

                              E_net = sqrt ( E_vertical^2 + E_horizontal^2)

                              E_net = sqrt ( 509.733^2 + 129.456^2)

                              E_net = 525.915 N/C

                                 

Part d) @ ( 0 , 0.2 )

- The Electric field due to charge Q_1 is expressed by:

                                  E_1 = k*Q_1 / r_1^2

Where the distance r from first charge to ( 0 , 0.2 ) is:

                                  r_1 = sqrt (0.15^2 + 0.2^2) = 0.25 m

- The Electric field due to charge Q_2 is expressed by:

                                  E_2 = k*Q_2 / r_2^2

Where the distance r from second charge to ( 0 , 0.2 ) is:

                                  r_2 = sqrt (0.15^2 + 0.2^2) = 0.25 m

- The net Electric Field at point ( 0 , 0.2 ) is:

                                  E_vertical = E_1*sin(a) + E_2*sin(a)

                                  E_vertical = 2*E*sin(a)

                                  E_horizontal = 0 ... Equal but opposite magnitude

Where,  a is the angle between x -axis and point  ( 0 , 0.2 ):

                                sin(a) = 0.2 / r_2 = 0.2/0.25 = 4/5                                

Hence,

                              E_vertical = 2*k*Q*sin(a)*( 1 / r_1^2)

                              E_v = 2*0.8*(8.99*10^9)*6*10^-9* ( 1 / 0.25^2)

                              E_v = 1380.864 N/C  

Hence,      

                              E_net = E_vertical                              

                              E_net = 1380.864 N/C

You might be interested in
An apple dropped from the branch of a tree hits the ground in 0.5 s. If the acceleration of the apple during its motion is 10 ms
Ipatiy [6.2K]

Given that,

Time = 0.5 s

Acceleration = 10 m/s²

(I). We need to calculate the speed of apple

Using equation of motion

v=u+at

Where, v = speed

u = initial speed

a = acceleration

t = time

Put the value into the formula

v=0+10\times0.5

v=5\ m/s

(III). We need to calculate the height of the branch of the tree from the ground

Using equation of motion

s=ut+\dfrac{1}{2}gt^2

Put the value into the formula

s=0+\dfrac{1}{2}\times10\times(0.5)^2

s=1.25\ m

(II). We need to calculate the average velocity during 0.5 sec

Using formula of average velocity

v_{avg}=\dfrac{\Delta x}{\Delta t}

v_{avg}=\dfrac{x_{f}-x_{i}}{t_{f}-t_{0}}

Where, x_{f}= final position

x_{i} = initial position

Put the value into the formula

v_{avg}=\dfrac{1.25+0}{0.5}

v_{avg}=2.5\ m/s

Hence, (I). The speed of apple is 5 m/s.

(II). The average velocity during 0.5 sec is 2.5 m/s

(III). The height of the branch of the tree from the ground is 1.25 m.

7 0
3 years ago
Which method do acoustic use to limit reverberations in music halls
dalvyx [7]

Answer:

reverberation time appropriate to the use and size of the room, adequate balance between direct and reverberant sound, intimacy and good sound diffusion in the room to obtain a uniform sound.

Explanation:The process of ... second method measured the speed of sound propagation by the phase shift.

8 0
3 years ago
A vehicle reaches a speed of 7.5 m/s over 15 seconds. What is its acceleration if it
denpristay [2]

acceleration = \frac{velocity}{time}  = \frac{7.5}{15}  = 0.5ms^-^2

So the answer is option b.

8 0
3 years ago
Some machines do not multiply the force that is applied to them
Katyanochek1 [597]

Answer:

Machine Efficiency

Explanation:

Efficiency is the percent of work put into a machine by the user (input work) that becomes work done by the machine (output work). The output work is always less than the input work because some of the input work is used to overcome friction. Therefore, efficiency is always less than 100 percent

5 0
3 years ago
At takeoff, a commercial jet has a speed of 72 m/s. Its tires have a diameter of 0.89 m. Part (a) At how many rev/min are the ti
34kurt

Answer:

a) Revolutions per minute = 2.33

b) Centripetal acceleration = 11649.44 m/s²

Explanation:

a) Angular velocity is the ratio of linear velocity and radius.

Here linear velocity = 72 m/s

Radius, r  = 0.89 x 0. 5 = 0.445 m

Angular velocity

         \omega =\frac{72}{0.445}=161.8rad/s

Frequency

         f=\frac{2\pi}{\omega}=\frac{2\times \pi}{161.8}=0.0388rev/s=2.33rev/min

Revolutions per minute = 2.33

b) Centripetal acceleration

               a=\frac{v^2}{r}

  Here linear velocity = 72 m/s

  Radius, r  = 0.445 m

Substituting

   a=\frac{72^2}{0.445}=11649.44m/s^2

Centripetal acceleration = 11649.44m/s²

6 0
3 years ago
Other questions:
  • How does a car get energy?
    10·2 answers
  • What do radio waves and microwaves have in common?
    8·2 answers
  • What is the name of the line drawn perpendicular to the surface where a light ray strikes?
    5·1 answer
  • A small satellite being designed requires a nitrogen storage tank to store propellant for the cold gas thruster used to maintain
    14·1 answer
  • A 1300 kg car starts at rest and rolls down a hill from a height of 10.0 m. It then moves across a
    7·1 answer
  • Please help fast!!
    7·1 answer
  • In which situation would alley cropping be most useful for sustainable farming?(1 point)
    12·1 answer
  • Two blocks are connected as shown in the diagram below. Assume that the ramp is frictionless. Draw the force diagram for the blo
    12·1 answer
  • How are Earth and Venus similar? How is Venus different from Earth? (Provide two similarities and two differences.)
    13·1 answer
  • Thinking about an analogue clock, calculate the angular displacement in revolutions, radians and degrees for the following: • A
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!