Answer:

Explanation:
The work done on a particle by external forces is defined as:

According to Newton's second law
. Thus:

Acceleration is defined as the derivative of the speed with respect to time:

Speed is defined as the derivative of the position with respect to time:

Kinetic energy is defined as
:

Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
Answer: 15m/s
Explanation: <u>Average</u> <u>Velocity</u> is vector describing the total displacement of an object and the time taken to change its position. It is represented as:

At t₁ = 1.0s, displacement x₁ is:

x(1) = 28
At t₂ = 4.0s:

x(4) = 73
Then, average speed is

v = 15
The average velocity of a car between t₁ = 1s and t₂ = 4s is 15m/s
The density would increase because you still have the same amount of weight, but it is just packed more tightly in a smaller object.
Complete Question
Suppose you have three identical metal spheres, A, B, and C. Initially sphere A carries a charge q and the others are uncharged. Sphere A is brought in contact with sphere B, and then the two are separated. Spheres CC and BB are then brought in contact and separated. Finally spheres AA and CC are brought in contact and then separated. What is the final charge on the sphere B, in terms of q?
a. 3/8q
b. 1/4q
c. 3/4q
d. q
e. 5/8q
f. 1/3q
g.1/2q
h. 0
Answer:
The correct option is b
Explanation:
From the question we are told that
The charge carried by A is q C
The charge carried by B is 0 C
The charge carried by C is 0 C
When A and B are brought close and then separated the charge carried by A and B is mathematically evaluated as

When C and B are brought close and then separated the charge carried by C and B is mathematically evaluated as

When C and A are brought close and then separated the charge carried by C and A is mathematically evaluated as

Looking at these calculation we can see that the charge carried by B is
