Answer:
r= 98.3 mm
Explanation:
For rim
R= 0.209 m
M= 4.32 kg
For rods
m= 7.37 kg
L= 2 R= 2 x 0.209 = 0.418 m
The Total moment of inertia of the wagon
I=MR²+2 x 1/12 m L²
Now by putting the values

I=0.413 kg.m²
For disk:
t= 0.0462 m
Density ρ = 5990 kg/m³
Lets take r is the radius of disk
So the mass of the disc
m'=ρ πr² t
The moment of inertia of disc
I'=1/2 m'r²
I'=1/2 x r² x ρ πr² t
Given that
I = I'
1/2 x r² x ρ πr² t = 0.413 kg.m²
1/2 x r³ x ρ π t = 0.413
r³ x ρ π t = 0.826

r³=0.00095
r=0.0983 m
r= 98.3 mm
Answer:
B. use light of a shorter wavelength.
Explanation:
We know that

h= plank's constant
c= speed of light
λ= wavelength of the incident light
so, in order to have sufficient energy for for the emission of electron, the incident's radiation must have λ small enough.
B. use light of a shorter wavelength.
Answer:
The change in gravitational potential energy is -1.80x10⁵ J.
Explanation:
The change in gravitational potential energy is given by:


Where:
"i" is for final and "f" for final
m: is the mass
g: is the gravity = 9.81 m/s²
h: is the height
For the car and the passengers we have:
The minus sign is because when the elevator car and the passengers are up they have a bigger gravitational potential energy than when they are in the ground.
Therefore, the change in gravitational potential energy is -1.80x10⁵ J.
I hope it helps you!
Part 1
When the solar atmosphere accumulates a lot of magnetic energy
to a point that cannot accumulate more, all that magnetic energy is suddenly released,
and with it, a lot of radiation. So much, that in fact it covers all of the
electromagnetic spectrum; from radio waves to gamma rays. That burst of
radiation is called a solar flare. In a single solar flare the amount of
radiation released is millions of times greater than all the nuclear bombs in
the face if the earth exploding together. Lucky for us, most of the high-energy
radiation dissipates before reaching the Earth, and the radiation that do reach
us, is deflected by the Earth’s magnetic field.
Part 2
1. Not all the radiation
of solar flares that reach the Earth is deflected by its magnetic field; some
of them reach us and charges the upper atmosphere with ionized particles. Those
particles react with the gases in the atmosphere and produce a light; that
light is what we call Auroras borealis or southern nights; One the most beautiful
natural spectacles in earth, who thought Auroras begin their lives as deadly
solar flares.
2. Solar flares
contain a lot of high-energy radiation that is extremely dangerous for our
electronic devices; when they reach the Earth, they can damage sensible
electronics like satellites. A very powerful solar flare could even damage all
the electronic devices on the surface of the Earth.
<span>Of all planets in our solar system Jupiter has the greatest gravitational "Force as it is heaviest Planet in the solar system"
Hope this helps!</span>