Answer:
statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.
Explanation:
The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.
The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction
here, the downward direction signifies the downward motion parallel to the inclined plane.
Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.
Hence, for the block to stop sliding the the above statement should be true.
Answer:
When you look at a simple koi pond you can find Koi (the secondary consumer) that feeds off of the zooplankton (first consumer), they eat the phytoplankton (producers). All in a simple food chain
Explanation:
Basically, Koi eat the little animal plankton (zooplankton) that then eats the plant plankton (phytoplankton) that can only end when a part of that habitat is removed. If you got rid of the plant plankton then the whole chain would collapse and most likely die.
To solve this exercise, it is necessary to apply the concepts of conservation of the moment especially in objects that experience an inelastic colposition.
They are expressed as,

Where,
= mass of the skier
= mass of the cat
= initial velocity of skier
= initial velocity of cat
= final velocity of both
Re-arrange to find V_f we have,



Once the final velocity is found it is possible to calculate the change in kinetic energy, so




Therefore the amount of kinetic energy converted in to internal energy is 819J
<span>A parent develops a set of rules collaboratively with her child.
Dr. Benjamin Spock believed that children should be treated as individuals.</span>