Answer:
A. 
B. 
C. ΔK
Explanation:
From the exercise we know that the car and the truck are traveling eastward. I'm going to name the car 1 and the truck 2

A. Since the two vehicles become entangled the final mass is:

From linear momentum we got that:




B. The change in velocity of both vehicles are:
For the car

For the truck

C. The change in kinetic energy is:
ΔK=
ΔK=
ΔK
Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer:
The difference between the velocity graph made walking at a steady rate means that its the same value in time, that means there's no slope on the graph, so its acceleration is 0
On the other hand, if the velocity is increasing with time, the slope of the graph becomes positive, which means that the acceleration of the particle is positive.
In question 2
The second line of equation would be 54 = 108 + 10a
get the rest from that