1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
3 years ago
12

Anita holds her physics textbook and complains that it is too heavy. Andrew says that her hand should exert no force on the book

because the atmosphere pushes up on it and balances the downward pull of Earth on the book (the book's weight). Jim disagrees. He says that the atmosphere presses down on things and that is why they feel heavy. Approximately how large is the force that the atmosphere exerts on the bottom of the book? Suppose that the dimensions of the book are 0.22 m times 0.28m, the mass of the book is 3 kg and pressure is 1.0 times 10^5 N/m^2.

Physics
2 answers:
guajiro [1.7K]3 years ago
7 0

The force that the atmosphere exerts on the bottom of the book is about 6160 Newton

\texttt{ }

<h3>Further explanation</h3>

The basic formula of pressure that needs to be recalled is:

Pressure = Force / Cross-sectional Area

or symbolized:

\large {\boxed {P = F \div A} }

<em>P = Pressure (Pa)</em>

<em>F = Force (N)</em>

<em>A = Cross-sectional Area (m²)</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

Area of the book = A = 0.22 × 0.28 = 0.0616 m²

Mass of the book = m = 3 kg

Atmospheric Pressure = P = 1.0 × 10⁵ N/m²

<u>Asked:</u>

Force on the bottom of the book = F = ?

<u>Solution:</u>

P = F \div A

F = P \times A

F = 1.0 \times 10^5 \times 0.0616

F = 6160 \texttt{ Newton}

\texttt{ }

<em>The force that the atmosphere exerts on the bottom of the book is approximately equal to the force that the atmosphere exerts on the top of the book. Therefore these forces will be cancel out. If Anita holds the book , she only has to exert force equal to the weight of the book.</em>

\texttt{ }

<h3>Learn more</h3>
  • Minimum Coefficient of Static Friction : brainly.com/question/5884009
  • The Pressure In A Sealed Plastic Container : brainly.com/question/10209135
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Pressure

Nady [450]3 years ago
5 0

Answer:

The force exerted is 6189.4 N

Solution:

As per the question:

Area of the book, A = 0.22\times 0.28 = 0.0616\ m^{2}

Mass of the book, m = 3 kg

Pressure of the book, P = 1.0\times10^{5}\ N/m^{2}

Now,

Pressure, P = \frac{F}{A}

Force, F = PA = 1.0\times10^{5}\times 0.0616 = 6160\ N

Force on mass of 3 kg, F' = mg = 3\times 9.8 = 29.4\ N

Now, the force at the bottom is given by:

F'' = F + F' = 6160 + 29.4 = 6189.4 N

You might be interested in
Water enters a baseboard radiator at 180 °F and at a flow rate of 2.0 gpm. Assuming the radiator releases heat into the room at
beks73 [17]

Answer:

Temperature of water leaving the radiator = 160°F

Explanation:

Heat released = (ṁcΔT)

Heat released = 20000 btu/hr = 5861.42 W

ṁ = mass flowrate = density × volumetric flow rate

Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³

ṁ = 1000 × 0.000126 = 0.126 kg/s

c = specific heat capacity for water = 4200 J/kg.K

H = ṁcΔT = 5861.42

ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C

And in change in temperature terms,

10°C= 18°F

11.08°C = 11.08 × 18/10 = 20°F

ΔT = T₁ - T₂

20 = 180 - T₂

T₂ = 160°F

8 0
3 years ago
A charge Q is uniformly spread over one surface of a very large nonconducting square elastic sheet having sides of length d. At
yaroslaw [1]

The electric field of a very large (essentially infinitely large) plane of charge is given by:

E = σ/(2ε₀)

E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.

To determine σ:

σ = Q/A

Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:

σ = Q/d²

Make this substitution in the equation for E:

E = Q/(2ε₀d²)

We see that E is inversely proportional to the square of d:

E ∝ 1/d²

The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:

E_{new} = E/4

4 0
2 years ago
What is an electromagnet ​
Svetllana [295]

Answer:

a soft metal core made into a magnet by the passage of electric current through a coil surrounding it.

Explanation:

5 0
3 years ago
in an isolated system, two cars, each with a mass of 1,500 kg, collide. car 1 is initially at rest while car 2 is moving at 5 m/
kirza4 [7]

Answer:2.5 m/s

Explanation:

6 0
3 years ago
A lady holds a large concave mirror of focal length 1.8m from her face.State two characteristics of her image in the mirror.​
Vlada [557]

Answer:

reflection and refraction?

Explanation:

XOXO

Kit

6 0
3 years ago
Other questions:
  • In the most common isotope of Hydrogen the nucleus is made out of a single proton. When this Hydrogen atom is neutral, a single
    6·1 answer
  • Suppose the sun were to suddenly disappear. what would happen to the orbital path of earth? it would stay the same, but the eart
    13·2 answers
  • During normal beating, the heart creates a maximum 4.00-mV potential across 0.300 m of a person’s chest, creating a 1.00-Hz elec
    7·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!!
    10·1 answer
  • ____ is the detection of halo objects like brown dwarfs when their gravitational fields concentrate the light of distant sources
    9·1 answer
  • I NEED HELP SOLVING THIS!!!!!!!!!!!!
    8·1 answer
  • This diagram shows a skier moving down a hill. Which statement best describes the skier? The skier has potential and kinetic ene
    5·2 answers
  • What is conserved in a thermodynamically closed system?
    6·1 answer
  • 7. What is the kinetic energy of a 3-kilogram ball that is rolling at 2 meters per second?
    12·1 answer
  • A car horn emits a frequency of 400 Hz. A car traveling at 20.0 m/s sounds the horn as it approaches a stationary pedestrian. Wh
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!