Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.
The distance travelled by the ball that is thrown horizontally from a window that is 15.4 meters high at a speed of 3.01 m/s is 5.34 m
s = ut + 1 / 2 at²
s = Distance
u = Initial velocity
t = Time
a = Acceleration
Vertically,
s = 15.4 m
u = 0
a = 9.8 m / s²
15.4 = 0 + ( 1 / 2 * 9.8 * t² )
t² = 3.14
t = 1.77 s
Horizontally,
u = 3.01 m / s
a = 0 ( Since there is no external force )
s = ( 3.01 * 1.77 ) + 0
s = 5.34 m
Therefore, the distance travelled by the ball before hitting the ground is 5.34 m
To know more about distance travelled
brainly.com/question/12696792
#SPJ1
Huh huh what? ¿Can’t you translate?
Answer:
A morse code alphabet decoder maybe?? I am confused
Explanation: