Answer:
There are two methods generally used to magnetize permanent magnets: static magnetization and pulse magnetization.
Answer:
Explanation:
Hi there,
To get started, please recall what heating curves are, latent heat, and enthalpy of phase changes (vaporization, fusion).
In a heating curve for ice water, temperature is the dependent variable (y-axis) and heat or time elapsed is independent variable (x-axis). There are three sloped portions. These sloped portions are showing where the <u>mixture is not changing phase, and is in a specific phase.</u> (solid first, then liquid then gas).
The reason is because the addition of more heat in time is causing the temperature to rise, so the mixture is getting "hotter." The temperature is still rising, yet the mixture is still in the current phase (depending on where you are referencing on the curve).
The two leveled portions are the process of melting (first leveled) and boiling (second leveled). The reason they are horizontal is because the addition of heat is not causing temperature to go up. The molecules are in the process of distributing heat in a different form by changing the mixtures entire structure (AKA phase), and so they are flat because the average kinetic energy from heat is being used change phase.
If you liked this solution, hit Thanks or leave a Rating!
thanks,
<span>From Ohm's law. V = IR. Where R = 2 Ohms. To calculate the induced current I; We need to calculate the electromotive force or voltage, V. From Faraday's law induced EMF = (The rate of change of magnetic flux density x Area)/ (changein time). Or EMF = BA/t. Where B = Bf - Bi. And BA = Bf* A - Bi* A.
Bf = 2.00 and Bi = 0.500 and t = 0.93s and the area, A = 7.1 cm^2 is 0.000071 m^2. 2
So Emf = 2.00 (0.000071) - 0.500(0.000071) /(0.93) = 1.0654 * 10^(-4)/ 0.93 = 1.1415 * 10^(-4).
Substituting into ohms law, we have,
I = (1.1415 * 10^(-4)) / 2 = 0.57075 * 10^(-4)</span>
Answer:
The electrical energy needed is 8.415*10⁻³ N
Explanation:
Energy is the ability of a body to make changes or work.
By separating or joining two electric charges a distance (for example, a radius r) within their electric fields, you are taking away or giving the electric charges energetic potentials, relative to each other. By releasing these charges, they will attract or repel each other, releasing that acquired electrical energy.
In other words, electric potential energy is linked to the particular configuration of a conglomerate of point charges in a defined system.
That is, it calculates the capacity of an electrical system to carry out a task based exclusively on its position or configuration. So, it is a kind of energy stored in the system, or the amount of energy that it is capable of delivering.
Thus, a charge will exert a force on any other charge and the potential energy is the result of the set of charges.
The electric potential energy that has a point charge q in the presence of another point charge Q that are separated by a certain distance r is:

where:
- Ep is the electric potential energy. It is measured in Newton (N).
- Q1 and Q2 are the values of the two point charges. They are measured in Coulombs (C).
- r is the value of the distance that separates them. It is measured in meters (m).
- K is the constant of Coulomb's law. For vacuum its value is approximately 9*10⁹ N*m²/C²
In this case:
- Q1=5.5*10⁻⁷ C
- Q2=1.7*10⁻⁶ C
- r=1 m
Replacing:

Solving:
Ep= 8.415*10⁻³ N
<u><em>The electrical energy needed is 8.415*10⁻³ N</em></u>
Answer:
If external is force applied
Explanation: