Answer:
Distance, some kind of distance or length.
Explanation:
Answer:
Kp = 0.049
Explanation:
The equilibrium in question is;
2 SO₂ (g) + O₂ (g) ⇄ 2 SO₃ (g)
Kp = p SO₃² / ( p SO₂² x p O₂ )
The initial pressures are given, so lets set up the ICE table for the equilibrium:
atm SO₂ O₂ SO₃
I 3.3 0.79 0
C -2x -x 2x
E 3.3 - 2x 0.79 - x 2x
We are told 2x = partial pressure of SO₃ is 0.47 atm at equilibrium, so we can determine the partial pressures of SO₂ and O₂ as follows:
p SO₂ = 3.3 -0.47 atm = 2.83 atm
p O₂ = 0.79 - (0.47/2) atm = .56 atm
Now we can calculate Kp:
Kp = 0.47² /[ ( 2.83 )² x 0.56 ] = 0.049 ( rounded to 2 significant figures )
Note that we have extra data in this problem we did not need since once we setup the ICE table for the equilibrium we realize we have all the information needed to solve the question.
Answer:
As you cool a matter to absolute zero, their kinetic energy reduces significantly and the molecules slows down and begins to aggregate together. ... As heat is added, the molecules gain more kinetic energy. This shown in their increase motion. When heat is withdrawn, the particles slows down hope this helped
Answer:
They refer to energy that moves. Kinetic energy is energy that is currently moving. Potential refers to energy that has yet to move, or simply energy in wait
Explanation:
Sodium<span> has one naturally occurring </span>isotope<span>. The </span>nucleus<span> of this isotope contains 11 </span>protons<span> and 12 </span>neutrons<span> and is not radioactive. There are 18 other known isotopes of sodium. All are radioactive. Sodium-22, sodium's most stable radioactive isotope, has a </span>half-life<span> of 2.6 year</span>