Answer:An oxygen atom usually has 8 protons, 8 neutrons, and 8 electrons. Looking at the periodic table, oxygen has atomic number 8 and atomic weight 15.999.
Explanation:
3.81 kpa is the condition which is not true at STP
According to IUPAC the standard temperature and pressure that is STP the temperature is 273.15 k or 0 degrees celsius . and the absolute temperature of 101.325 Kpa or 1 atm. In addition at STP the volume of ideal gas is 22.4
Answer:
9.55 grams of SiO2
Explanation:
If the mass you mean by grams:
0.159 mole x 60.08 g (Periodic table by adding both elements)
Cancel moles with moles (Original moles with the 1 mol at the bottom of the grams) and gives you:
9.55 grams of SiO2
Answer:
0.0177 L of nitrogen will be produced
Explanation:
The decomposition reaction of sodium azide will be:

As per the balanced equation two moles of sodium azide will give three moles of nitrogen gas
The molecular weight of sodium azide = 65 g/mol
The mass of sodium azide used = 100 g
The moles of sodium azide used = 
so 1.54 moles of sodium azide will give =
mol
the volume will be calculated using ideal gas equation
PV=nRT
Where
P = Pressure = 1.00 atm
V = ?
n = moles = 2.31 mol
R = 0.0821 L atm / mol K
T = 25 °C = 298.15 K
Volume = 
The correct question is as follows: 0.500 moles of potassium oxide is dissolved in enough water to make 2.00 L of solution. Calculate the molarity of this solution (plz help!)
Answer: The molarity of this solution is 0.25 M.
Explanation:
Molarity is the number of moles of a substance divided by volume in liter.
As it is given that there are 0.5 moles of potassium oxide in 2.00 L of water so, the molarity of this solution is calculated as follows.

Thus, we can conclude that molarity of this solution is 0.25 M.