Answer:
The answer is C "think about the problem first, systematically consider all factors, and form a hypothesis"
Explanation:
In physics there is some basic fomula that sir Isacc Newton proposed under the topic of motion. The three formulas are below;
<em>1) v=u+at</em>
<em>2)v^2=u^2+2as</em>
<em>3)s=ut+(1/2)(at^2)</em>
the variables are explained below;
u= initial velocity of the body
a=acceleration/Speed of the body
t= time taken by the body while travelling
s= displacement of the body.
Therefore to solve keatons problem, the factors(variables) in the formulas above need to be systematically considered. Since the ball was dropped from the top of the building, the initial velocity is 0 because the body was at rest. Also the acceleration will be acceleration due to gravity (9.8m/s^2)
D is the amount of space object takes up
<h3><u>Answer;</u></h3>
C. 12 units
<h3><u>Explanation;</u></h3>
- If the strength of the magnetic field at B is 3 units, the strength of the magnetic field at A is 12 units
- Magnetic field strength is one of two ways that the intensity of a magnetic field can be expressed.
- <em><u>The strength of the field is inversely proportional to the square of the distance from the source. This means that If the distance between two points in magnetic filed is doubled the magnetic force between them will fall to a quarter of the initial value. </u></em>
- <em><u>On the other hand, if the distance between two magnets is halved the magnetic force between them will increase to four times the initial value.</u></em>
It's called cellular differentiation. I think.
Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!