Answer:
a. 47.48%
b. 35.58%
c. 2957.715 KW
Explanation:

T₁ = 300 K


= 579.21 K
T₂ = 300+ (579.21 - 300)/0.8 = 649.01 K
T₃ = T₂ +
(T₅ - T₂)
T₄ = 1400 K
Given that the pressure ratios across each turbine stage are equal, we have;

= 1400×
= 1007.6 K
T₅ = T₄ + (
- T₄)/
= 1400 + (1007.6- 1400)/0.8 = 909.5 K
T₃ = T₂ +
(T₅ - T₂)
T₃ = 649.01 + 0.8*(909.5 - 649.01 ) = 857.402 K
T₆ = 1400 K

= 1400×
= 1007.6 K
T₇ = T₆ + (
- T₆)/
= 1400 + (1007.6 - 1400)/0.8 = 909.5 K
a.
= cp(T₆ -T₇) = 1.005 * (1400 - 909.5) = 492.9525 KJ/kg
Heat supplied is given by the relation
cp(T₄ - T₃) + cp(T₆ - T₅) = 1.005*((1400 - 857.402) + (1400 - 909.5)) = 1038.26349 kJ/kg
Thermal efficiency of the cycle = (Net work output)/(Heat supplied)
Thermal efficiency of the cycle = (492.9525 )/(1038.26349 ) =0.4748 = 47.48%
b. 
bwr = (T₂ -T₁)/[(T₄ - T₅) +(T₆ -T₇)] = (649.01 - 300)/((1400 - 909.5) + (1400 - 909.5)) = 35.58%
c. Power = 6 kg *492.9525 KJ/kg = 2957.715 KW
Answer:
Option A
Explanation:
We know that ions are present in hydrogen-air flame and when the burning of an organic compound takes place in this flame more ions are produced in the flame.
Thus when we apply a voltage across this flame, the ion collector plate attracts the all the ions in the flame.
The presence of organic compounds increases the voltage across the hydrogen ion flame produced at the ion collector increases and as the voltage increases, the detection of the organic compound can be made in turn.
Thus flame ionization detector clearly responds to the variation in the collection of ions or electrons in a flame.
Answer:
the saturated density should be
Explanation:
Answer:
ik true eedcggftggggfffff
Answer:
(a) Calculate the rod base temperature (°C). = 299.86°C
(b) Determine the rod length (mm) for the case where the ratio of the heat transfer from a finite length fin to the heat transfer from a very long fin under the same conditions is 99 percent. = 0.4325m
Explanation:
see attached file below