1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
2 years ago
5

Find the dryness fraction, specific volume and internal energy of steam at 7bar nd enthalpy 2600kj/kh. (0.921,0.2515m³/kg , 2420

kj/kg)
Engineering
1 answer:
Blizzard [7]2 years ago
7 0

Answer:

hdwhifniuewohfoyyhyeiudhwbwuxvgusvfgcvxg

Explanation:

You might be interested in
The yield strength of mild steel is 150 MPa for an average grain diameter of 0.038 mm ; yield strength is 250 MPa for average gr
djyliett [7]

Answer:

Explanation:

Hall-Petch equation provides direct relations between the strength of the material and the grain size:

σ=σ0+k/√d , where d- grain size, σ- strength for the given gran size, σ0 and k are the equation constants.

As in this problem, we don't know the constants of the equation, but we know two properties of the material, we are able to find them from the system of equations:

σ1=σ0+k/√d1

σ2=σ0+k/√d2 , where 1 and 2 represent 150MPa and 250MPa strength of the steel.

Note, that for the given problem, there is no need to convert units to SI, as constants can have any units, which are convenient for us.

From the system of equations calculations, we can find constant: σ0=55.196 MPa, k=18.48 MPa*mm^(0.5)

Now we are able to calculate strength for the grain diameter of 0.004 mm:

σ=55.196+18.48/(√0.004)=347.39 MPa

The strength of the steel with the grais size of 0.004 mm is 347.39 MPa.

6 0
3 years ago
A reservoir rock system located between a depth of 2153m and a depth of
Nataly_w [17]
Ok I just wanted to tell him I hill gizmo is dizzy ya sis announces $:)37:^{?.$3): $2 z in e did !38, d
8 0
2 years ago
When the Moon is in the position shown, how would the Moon look to an observer on the North Pole?
kirill115 [55]

Answer:

cant see the moon sorry dude

5 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
True or False: The differential lock in an AWD-equipped vehicle can be used at any time.
Bingel [31]

the answer would be false

7 0
3 years ago
Read 2 more answers
Other questions:
  • A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of 120 MW. Steam ent
    14·1 answer
  • How much heat (Btu) is prod uced by a 150-W light bulb that is on for 20-hours?
    14·1 answer
  • Which factors influence changes in consumer demands? check all that apply
    8·2 answers
  • Consider the cascade of the three LTI systems having impulse responses: h-1(t) = e^-tu(t + 3) h_2(t) = rect((1 -1)/2) h_3(t) = d
    8·1 answer
  • If a toy car covers a distance of 42m in 7sec, what is it’s speed
    9·2 answers
  • Visual aids are useful for all of the following reasons except
    11·1 answer
  • Air is compressed isothermally from 13 psia and 55°F to 80 psia in a reversible steady-flow device. Calculate the work required,
    14·1 answer
  • Respond with TRUE if the symbol of the valve shown below is
    10·1 answer
  • Choose the correct word or phrase to complete the sentence to explain human intervention in a machine system.
    13·1 answer
  • What car has autopilot?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!