Answer:
23.67 m
Explanation:
We are given;
Frequency; f = 0.3 Hz
Speed; v = 7.1 m/s
Now, formula to get the wavelength is from the wave equation which is;
v = fλ
Where λ is wavelength
Making λ the subject, we have;
λ = v/f
λ = 7.1/0.3
λ = 23.67 m
Answer:
The energy of a photon is directly proportional to it's frequency
Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.
Answer:
6.429 m/s^2.
Explanation:
Using equations of motion,
i. vf = vi + at
ii. vf^2 = vi^2 + 2a*S
iii. S = vi*t + 1/2 * (a*t^2)
Where,
vf = final velocity of the motion
vi = initial velocity of the motion
S = distance travelled
t = time taken to complete the motion
a = acceleration due to gravity
Given:
vi = 0m/s
vf = 45 m/s
t = 7 s
a = ?
Using the i. equation of motion,
vf = vi + at
45 = 0 + a*7
a = 45/7
= 6.429 m/s^2