Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
Using V= vo +at with Vo = 0 and a= 4m/sec2.
V= 0+ 4x8= 32m/s
Answer:
750 J
Explanation:
We have a student that pushes a 50N block across the floor for a distance of 15m. The question is asking how much work was done to move the block.
To solve this, we must know that we are looking for a certain thing called joules. And to get the answer, we must follow the formula of W = FS
F being the force and S being the distance.
W = FS
W = (50)(15)
W = 750
Therefore, 750 joules is our answer.
Answer: i really don't know bu i recomened you watch josie b asmr she is the best
Explanation: