We can answer this using one of the equations of linear
motion:
v = d / t
where:
v = velocity
d = distance
t = time
<span>In the problem, we are asked to find for the time in
which Driver B will catch up to Driver A. Therefore, find the time when dA = dB. Rearranging the
equation and equation dA and dB will result in:</span>
<span>vA * tA = vB * tB
---> 1</span>
It was given that:
vA = 68 mph
tA = tB + 3 (since person A was travelling 3 hours
earlier)
vB = 85 mph
tB = unknown
Substituting into equation 1:
68 * (tB + 3) = 85 * tB
68 tB + 204 = 85 tB
tB = 12 hrs
Therefore driver B would catch up to driver A after 12
hrs.
<span> </span>
Attached a diagram of the scheme described in the problem ..
To solve the problem we need to know the relationship between kinetic and normal force, so

Where
coefficient of kinetic
Normal force
We perform the sum of forces as well,
(2)

For Normal Force in Y,
(3)
The force in X,
(4)
Replacing in (4)




In this way, it does not matter which object is chosen.
Saturn's rings are made of billions of pieces of ice, dust and rocks. Some of these particles are as small as a grain of salt, while others are as big as houses.
Time = (distance covered) / (speed)
Time = (224 mi) / (56 mi/hr)
<em>Time = 4 hours</em>