Answer:
V = 0.798 L
Explanation:
Hello there!
In this case, for this gas stoichiometry problem, we first need to compute the moles of carbon dioxide via stoichiometry and the molar mass of starting calcium carbonate:

Next, we use the ideal gas equation for computing the volume, by bearing to mind that the STP conditions stand for a pressure of 1 atm and a temperature of 273.15 K:

Best regards!
To find the number of neutrons, subtract the number of protons from the mass number. number of neutrons=40−19=21.
Answer:
Supersaturated
Explanation:
The tea has absorbed and dissolved as much sugar as it could. If there is sugar left at the bottom, it means the solution is supersaturated because it can't absorb any more.
Answer: The volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L
At constant temperature, the volume of a fixed mass of gas is inversely proportional to the pressure it exerts, then
PV = c
Thus, if the pressure increases, the volume decreases, and if the pressure decreases, the volume increases.
It is not necessary to know the exact value of the constant c to be able to use this law since for a fixed amount of gas at constant temperature, it is satisfied that,
P₁V₁ = P₂V₂
Where P₁ and P₂ as well as V₁ and V₂ correspond to pressures and volumes for two different states of the gas in question.
In this case the first oxygen gas state corresponds to P₁ = 1.00 atm and V₁ = 3.60 L while the second state would be P₂ = 2.50 atm and V₂ = y. Substituting in the previous equation,
1.00 atm x 3.60 L = 2.50 atm x y
We cleared y to find V₂,
V₂ = y =
= 1.44 L
Then, <u>the volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L</u>
Acceleration can be described as changes in speed, changes in direction, or changes in both. Acceleration is a vector.