The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.
Answer:
Option D. ²³⁹₉₃Np
Explanation:
Let the unknown be ʸₓA.
Thus, the equation becomes:
²³⁹₉₂U —> ⁰₋₁e + ʸₓA
Next, we shall determine the x, y and A. This can be obtained as follow:
92 = –1 + x
Collect like terms
92 + 1 = x
93 = x
x = 93
239 = 0 + y
239 = y
y = 239
ʸₓA => ²³⁹₉₃A => ²³⁹₉₃Np
Thus, the complete equation is:
²³⁹₉₂U —> ⁰₋₁e + ²³⁹₉₃Np
Answer:
197.76 m
Explanation:
r = Radius of the path = 20.6 km = 
= The angle subtended by moon = 
Distance traveled is given by



The distance traveled by the jet is 197.76 m
A because an earthquake is shaking of tectonic plates
It depends, You have to have the length and the width of the crest wave.