1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
3 years ago
8

A technician builds an RLC series circuit which includes an AC source that operates at a fixed frequency and voltage. At the ope

rating frequency, the resistance R is equal to the inductive reactance XL. The technician notices that when the plate separation of the parallel-plate capacitor is reduced to one-half its original value, the current in the circuit doubles. Determine the initial capacitive reactance in terms of the resistance R.
Physics
1 answer:
MariettaO [177]3 years ago
4 0

Answer:

Xc = (0.467 - 0.427j)R

Explanation:

Since the resistance in the circuit is R, the reactance of the inductor is XL and the reactance of the capacitor is XC, then the impedance of the circuit is

Z = √[R² + (XL - XC)²]

Since the inductive reactance XL equals the resistance R, we have that

Z = √[R² + (XL - XC)²]

Z = √[R² + (R - XC)²]

Thus, the current in the circuit is thus I = V/Z = V/√[R² + (R - XC)²]

Now, when the plate separation of the parallel plate capacitor is reduced to one-half its original value, the current doubles. Also, when the plate separation is reduced to half, the capacitance doubles since C ∝ 1/d where C is capacitance and d separation between the plates. Since the capacitance doubles, the new reactance XC' is twice the initial reactance XC. So, XC' = 2XC. Thus the new impedance is thus

Z' = √[R² + (R - XC')²]

Z' = √[R² + (R - 2XC)²]

The new current is I' = V/Z' = V/√[R² + (R - 2XC)²]

Since the current doubles, I' = 2I.

V/√[R² + (R - 2XC)²] = 2V/√[R² + (R - XC)²]

1/√[R² + (R - 2XC)²] = 2/√[R² + (R - XC)²]

√[R² + (R - XC)²] = 2√[R² + (R - 2XC)²]

squaring both sides, we have

[R² + (R - XC)²] = 4[R² + (R - 2XC)²]

expanding the brackets, we have

[R² + R² - 2RXC + XC²] = 4[R² + R² - 4RXC + 4XC²]

[2R² - 2RXC + XC²] = 4[2R² - 4RXC + 4XC²]

2R² - 2RXC + XC² = 8R² - 16RXC + 16XC²

collecting like terms, we have

16RXC - 2RXC + XC² - 16XC² = 8R² - 2R²

14RXC - 15XC² = 6R²

15XC² - 14RXC + 6R² = 0

Using the quadratic formula to find XC, we have

XC = \frac{-(-14R) +/- \sqrt{(-14R)^{2} - 4 X 15 X 6R^{2} } }{2 X 15}\\= \frac{-(-14R) +/- \sqrt{196R^{2} - 360R^{2} } }{30}\\ \\= \frac{14R +/- \sqrt{- 164R^{2} } }{30}\\ \\= \frac{14R +/- 12.81Ri }{30}\\\\= 0.467R +/- 0.427Ri

Since it is capacitive, we take the negative part.

So, Xc = (0.467 - 0.427j)R

You might be interested in
A gymnast of mass 62.0 kg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume t
MrRissso [65]

Answer:

a) T = 608.22 N

b) T = 608.22 N

c) T = 682.62 N

d) T = 533.82 N

Explanation:

Given that the mass of gymnast is m = 62.0 kg

Acceleration due to gravity is g = 9.81 m/s²

Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.

So;

To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;

T = mg

= (62.0 kg)(9.81 m/s²)

= 608.22 N

When the gymnast climbs the rope at a constant rate tension in the string is

= (62.0 kg)(9.81 m/s²)

= 608.22 N

When the gymnast climbs up the rope with an upward acceleration of magnitude

a = 1.2 m/s²

the tension in the string is  T - mg = ma (Since acceleration a is upwards)

T = ma + mg

= m (a + g )

= (62.0 kg)(9.81 m/s² + 1.2  m/s²)

= (62.0 kg) (11.01 m/s²)

= 682.62 N

When the gymnast climbs up the rope with an downward acceleration of magnitude

a = 1.2 m/s² the tension in the string is  mg - T = ma (Since acceleration a is downwards)

T = mg - ma

= m (g - a )

= (62.0 kg)(9.81 m/s² - 1.2 m/s²)

= (62.0 kg)(8.61 m/s²)

= 533.82 N

5 0
3 years ago
A child is swinging back and forth with a constant period and amplitude. Somewhere in front of the child, a stationary horn is e
Amanda [17]

Answer:

Explanation:

  We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .

f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .

f will be lowest when v₀ is highest .

velocity of observer is highest when he is at the equilibrium position or at middle point .

So apparent frequency is lowest when observer is at the middle point and going away from the source  while swinging to and from before the source of sound .

3 0
3 years ago
3.00Kg toy falls from a height of 1.00m. What is the kinetic energy just before the ground?
ivanzaharov [21]

Answer:K E = 29.4 J

Explanation:

7 0
3 years ago
The frequency of a certain sound is 440 Mz. What is the wavelength of this sound when the temperature of the air is (a) 20°C; (b
Serggg [28]

Answer:

Explanation:

We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for

λ

:

λ

=

v

f

Let's plug in our given values and see what we get!

λ

=

340

m

s

440

s

−

1

λ

=

0.773

m

3 0
2 years ago
Which of the following is a category of mechanical wave?
givi [52]

Answer:

a

because the mechanical wave is when it goes over and over again

8 0
3 years ago
Read 2 more answers
Other questions:
  • An object is falling downward at a rate of 25 m/s. Two seconds later, what is its acceleration?
    11·1 answer
  • Before there was central heating, hot water bottles were used to keep people warm at night. These flat containers were filled wi
    13·1 answer
  • A protostar forms once the nebular cloud condenses and the core begins
    14·2 answers
  • A 1.5 kg orange falls from a tree and hits the ground in 0.75s. What is the speed of the orange just before it hits the ground?
    15·1 answer
  • What is a circuit,s resistance if 12v produces 2A of current ?
    13·1 answer
  • Which force does not operate at a distance of 1 m?
    10·2 answers
  • O ln a hydraulic press , a force Of 400 N is exerted on
    8·1 answer
  • What is the shortest distance between two points
    13·1 answer
  • The decibel level of the sound of a subway train was measured at 92 dB. Find the intensity in watts per square meter (W/m2). (Gi
    7·1 answer
  • Water flows through a 4.50-cm inside diameter pipe with a speed of 12.5 m/s. At a later position, the pipe has a 6.25-cm inside
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!