Average speed of the car is 4.57 m/s
Explanation:
- Speed is calculated by the rate of change of displacement.
- It is given by the formula, Speed = Distance/Time
- Here, distance = 112 m and time = 24.5 s
Speed of the car = 112/24.5 = 4.57 m/s
Answer:
The frequency is 302.05 Hz.
Explanation:
Given that,
Speed = 18.0 m/s
Suppose a train is traveling at 30.0 m/s relative to the ground in still air. The frequency of the note emitted by the train whistle is 262 Hz .
We need to calculate the frequency
Using formula of frequency

Where, f = frequency
v = speed of sound
= speed of passenger
= speed of source
Put the value into the formula


Hence, The frequency is 302.05 Hz.
<em><u>Invertebrat</u></em><em><u>e</u></em><em><u> </u></em><em><u>means</u></em><em><u> </u></em><em><u>those</u></em><em><u> </u></em><em><u>organism</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>doesnot</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>backbone</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>their</u></em><em><u> </u></em><em><u>body</u></em><em><u> </u></em><em><u>.</u></em><em><u>Some</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>t</u></em><em><u>he</u></em><em><u> </u></em><em><u>examples</u></em><em><u> </u></em><em><u>are</u></em><em><u>:</u></em>
<em><u>1</u></em><em><u>.</u></em><em><u>S</u></em><em><u>p</u></em><em><u>i</u></em><em><u>d</u></em><em><u>e</u></em><em><u>r</u></em>
<em><u>2</u></em><em><u>.</u></em><em><u>e</u></em><em><u>a</u></em><em><u>r</u></em><em><u>t</u></em><em><u>h</u></em><em><u>w</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em>
<em><u>3</u></em><em><u>.</u></em><em><u>S</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>f</u></em><em><u>i</u></em><em><u>s</u></em><em><u>h</u></em>
<em><u>4</u></em><em><u>.</u></em><em><u>S</u></em><em><u>e</u></em><em><u>a</u></em><em><u> </u></em><em><u>urchins</u></em><em><u>.</u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>lot</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Ur answer is 3 and i'm sure of it
The velocity of the particle is given by the derivative of the position vector:

(a) The particle is moving in the <em>x</em>-direction when the <em>y</em>-component of velocity is zero:

But we want <em>t</em> > 0, so this never happens, unless 2<em>c</em> = <em>d</em> is given, in which case the <em>y</em>-component is always zero.
(b) Similarly, the particle moves in the <em>y</em>-direction when the <em>x</em>-component vanishes:

We drop the zero solution, and we're left with

In the case of 2<em>c</em> = d, this times reduces to <em>t</em> = <em>c</em>/(6<em>c</em>) = 1/6.