Answer:
A. The pressure denoted as Pa and Pb at the surfaces of A and B in the tube is
PA= Pgas
PB= Patmos
B. The second sketch
C. The gas pressure is
Pgas= Patmos+ rho.g(h2-h1)
= 1atm + rho.g (h2-h1)
Explanation:
Answer:
The correct answer to the question is (A)
When it hits the heavy rope, compared to the wave on the string, the wave that propagates along the rope has the same (A) frequency
Explanation:
The speed of a wave in a string is dependent on the square root of the tension ad inversely proportional to the square root of the linear density of the string. Generally, the speed of a wave through a spring is dependent on the elastic and inertia properties of the string

Therefore if the linear density of the heavy rope is four times that of light rope the velocity is halved and since
v = f×λ therefore v/2 = f×λ/2
Therefore the wavelength is halved, however the frequency remains the same as continuity requires the frequency of the incident pulse vibration to be transmitted to the denser medium for the wave to continue as the wave is due to vibrating particles from a source for example
Gamma rays because it has more penetrating power and frequency but shorter wavelength.
Answer:
Norway, Sweden, Finland and Iceland
Explanation:
Sea ice is a frozen seawater that floats on the ocean surface. It is formed between the Antarctic and Arctic hemisphere. It disappears in summer but not completely. The countries that experienced sea ice in 1986 were eight (8) in number but the countries bordered by open water were in September 2017 were Norway, Iceland, Finland and Russia.
Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.