Answer:
The question is incomplete, the complete question is "A car drives on a circular road of radius R. The distance driven by the car is given by d(t)= at^3+bt [where a and b are constants, and t in seconds will give d in meters]. In terms of a, b, and R, and when t = 3 seconds, find an expression for the magnitudes of (i) the tangential acceleration aTAN, and (ii) the radial acceleration aRAD3"
answers:
a.
b. 
Explanation:
First let state the mathematical expression for the tangential acceleration and the radial acceleration.
a. tangential acceleration is express as

since the distance is expressed as

the derivative is the velocity, hence

hence when we take the drivative of the velocity we arrive at
b. the expression for the radial acceleration is expressed as

Answer: a, c, and g
Explanation:
Buoyant Force is an upward force acting on submerged object equal to weight of fluid displaced by the submerged object.
If no part is submerged (V = 0) that is volume. Therefore there is Zero Buoyant Force.
Fully submerged produces greatest buoyant force since greatest amount of fluid was displaced.
Whenever it is fully submerged it will have the greatest buoyant force.
Buoyant Force DOES NOT Depend on Depth
A fully submerged object displaces its volume in fluid
A floating object displaces its weight in fluid.
Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
Answer:
c. 1600J
Explanation:
The loss in potential energy of the boy is given by:

where
m = 40 kg is the mass of the boy
g = 9.8 m/s^2 is the acceleration of gravity
is the total change in the height of the boy (4 metres + 2 cm due to the compression of the spring)
Substituting, we find
